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INTRODUCTION

Ecological field surveys and landcover
mapping are essential to evaluating land resources
and developing management strategies that are
appropriate to the varying conditions of the
landscape. More specifically, land classification
and mapping can be used to more efficiently
allocate inventory and monitoring efforts, to
partition ecological information for analysis of
ecological relationships, to develop predictive
ecological models, and to improve techniques for
assessing and mitigating impacts. To satisfy this
wide range of needs for the Bering Land Bridge
National Preserve (BELA) and Cape Krusenstern
National Monument (CAKR), the National Park
Service (NPS) is pursuing an integrated “bottom
up” approach for inventorying and classifying
ecological characteristics, and a “top down”
approach to landcover mapping using satellite
image processing and environmental modeling to
incorporate numerous environmental
characteristics. In this effort we combined the areas
for BELA and CAKR into one mapping effort
because the the ecological characteristics were
similar, both areas were covered by a single
satellite scene, and it was more efficient to do them
together.

To enhance the landcover mapping, which is
based primarily on spectral characteristics, we used
a multi-step process to better partition the
variability in vegetation and other ecological
characteristics. These included: (1) an integrated
ecological land survey to characterize vegetation,
soils, and other ecological characteristics; (2)
classification of plant communities (floristic
associations), soils, and local-scale ecosystems
(termed “ecotypes”) that integrate covarying
ecological properties; (3) analysis of relationships
among ecological components; (4) spectral
classification of vegetation structure and dominant
plants; and (5) rule-based modeling to better
identify and separate the plant communities
associated with alpine, riverine, and coastal
physiographic regions. Using this integrated
ecological land survey approach, we produced a
landcover map that has accompanying attributes
for vegetation, soils, ecotypes, and a suite of
environmental properties. In this report, we
emphasize the ecotype component of the landcover
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map, because it provides the most discrete basis for
organizing relationships among vegetation, soils,
physiography, and other environmental properties.

In an ecological land survey and classification
(ELS), landscapes are viewed not as aggregations
of independent biological and physical resources,
but as ecological systems with functionally related
parts (Rowe 1961; Wiken and Ironside 1977;
Bailey 1980, 1996; Driscoll et al. 1984). The goal
of an ELS is to provide a consistent conceptual
framework for modeling, analyzing, interpreting,
and applying ecological knowledge. To provide the
information required for such a wide range of
applications, an ELS includes three phases: (1) an
ecological land inventory that surveys and analyzes
data obtained in the field; (2) an ecological land
classification that classifies and maps ecosystem
distribution; and (3) an ecological land evaluation
that assesses the capabilities and sensitivities of the
land to various land management practices. This
three-phased approach of linking ecological
characteristics within a landcover map and spatial
database improves our ability to predict the
response of ecosystems to human impacts and
facilitates the production of thematic maps for
specialized engineering and environmental
applications.

The structure and function of natural
ecosystems are regulated largely along gradients of
energy, moisture, nutrients, and disturbance. These
gradients are affected by climate, physiography,
geomorphology, soils, hydrology, vegetation, and
fauna, and are referred to as ecological components
(in this report) or ‘state factors’ (Barnes et al. 1982,
ECOMAP 1993, Bailey 1996). We used the
state-factor approach (Jenny 1941, Van Cleve et al.
1990, Vitousek 1994, Bailey 1996, Ellert et al.
1997) to evaluate relationships among individual
ecological components and to develop a reduced
set of ecotypes (Figure 1a). Based on the landscape
relationships developed from the “bottom up,” we
integrated satellite remote sensing of vegetation
characteristics, physiographic maps, and Digital
Elevation Model (DEM) topography to model the
distribution of landcover types from the “top
down.” The resulting landcover maps, which
integrate co-varying biological and physical
characteristics,  provide a  comprehensive
information base that can be used for ecosystem
management.

BELA-CAKR Landcover Mapping
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Figure 1.

Interaction of interrelated state factors that control the structure and function of ecosystems

(a) and the scales at which they operate (b).

An ecological land classification also involves
the organization of ecological components within a
hierarchy of spatial and temporal scales (Wiken
1981, Allen and Starr 1982, O’Neil et al. 1986,
Delcourt and Delcourt 1988, Klijn and Udo de
Haes 1994, Forman 1995, Bailey 1996).
Local-scale features (e.g., vegetation) are nested
within regional-scale components, (e.g., climate
and physiography) (Figure 1b). Climate,
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particularly  temperature and  precipitation,
accounts for the largest proportion of global
variation in ecosystem structure and function
(Walter 1979, Vitousek 1994, Bailey 1998). Within
a given climatic zone, physiography (characteristic
geologic substrate, surface shape, and relief)
controls the rates and spatial arrangements of
geomorphic processes and energy flow. These
processes result in the formation of geomorphic



units with characteristic lithologies, textures, and
surface forms, which in turn affect soil properties
and the movement of water (Wahrhaftig 1965,
Swanson et al. 1988, Bailey 1996). Water
movement through soil is a critical factor in
determining the distribution of vegetation (Fitter
and Hay 1987, Oberbauer et al. 1989), due to its
influence on both water balance and nutrient
availability for plants. Finally, vegetation provides
structure and energy that affect the distribution of
many wildlife species. The interrelated processes
that operate across these components at the various
scales can also be sources of disturbance that
greatly influence the timing and development of
ecosystems (Watt 1947, Pickett et al. 1989, Walker
and Walker 1991, Forman 1995). Official systems
for classifying ecosystems across scales have been
developed for both the United States (ECOMAP
1993) and Canada (Wiken and Ironside 1977),
while the proposed system for Europe incorporates
elements of both the U.S. and Canadian systems
(Klijn and Udo de Haes 1994).

A hierarchical approach to mapping
vegetation and land cover was developed for
northern Alaska by Everett and Walker (Everett et
al. 1978; Walker 1983, 1999). They also applied an
integrated geobotanical approach to mapping
ecosystem components in the Prudhoe Bay region,
but did not group the integrated units hierarchically
(Walker et  al 1980).  Recently, an
integrated-terrain-unit  (ITU) approach was
developed for large-scale mapping of ecosystems
on the Arctic Coastal Plain (Jorgenson et al. 1997,
Jorgenson et al. 2003), the entire North Slope
(Walker 1999, Jorgenson and Heiner 2003),
Yukon-Kuskokwim Delta (Jorgenson 2000),
interior Alaska (Jorgenson et al. 1999, Jorgenson et
al. 2001), and south-central Alaska (Jorgenson et
al. 2003). The ITU approach also has been used for
mapping circumpolar arctic vegetation (Walker et
al. 2002).

In implementing the ecological land
classification portion of landcover mapping, we
used a simplified ITU approach that incorporated
three components that are readily mapped or
modeled, including physiographic units derived
from the existing landscape-level ecological maps
(subsections) for BELA (Jorgenson 2001) and
CAKR (Swanson 2001) that are closely related to
surficial geology and geomorphology, surface
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forms derived from the DEM (primarily
slope-related features), and vegetation from the
landcover spectral classification. This ITU
approach, along with the landscape relationships
developed from the analysis of the field survey
information, allowed us to develop an enhanced set
of landcover types from remote sensing that
essentially differentiate ecosystems at the ecotype
level of ecological land classification. This
integrated approach has several benefits: it
recognizes the important effects of geomorphic
processes on natural disturbance regimes (e.g.,
flooding, thermokarst) and the flow of energy and
material, it preserves the diversity of
environmental characteristics, and it wuses a
systematic approach to classifying landscape
features for applied analyses. To demonstrate one
application of this approach, we analyzed the
relationships among soil and landcover types, and
used these relationships to develop a map of soil
associations. Thus, the landcover map can serve as
the spatial database with differing ecological
components to aid resource managers evaluate
ecological impacts and develop land management
strategies appropriate for a diversity of landscape
conditions.

Accordingly, the specific objectives of this
ecological land survey and landcover mapping for
BELA and CAKR were to:

1) conduct a field survey of ecosystem
components, including geomorphology
(surficial geology), topography, soils,
hydrology, and vegetation within the
study area;

2) evaluate the relationships
ecosystem components;

among

3) classify landcover types (local-scale
ecosystems or ecotypes) based on
quantitative analysis of field data;

4) map landcover types through processing
of Landsat TM satellite imagery and
rule-based modeling; and

5) use the map database and ecological
relationships to derive maps of soil
distribution.

BELA-CAKR Landcover Mapping



Methods

METHODS

FIELD SURVEYS

Field surveys were conducted in BELA
during 10-15 July 2002 and in CAKR during
11-16 July 2003 (Figures 2 and 3) to collect
ecosystem component data. A gradient-directed
sampling scheme (Austin and Heyligers 1989) was
used to sample the range of ecological conditions
and to provide the spatially-related data needed to
interpret  ecosystem  development. Intensive
sampling was done primarily along transects
(toposequences) located within major
physiographic environments, including coastal,
riverine, lacustrine, lowland, upland, and alpine
areas. Along each transect, 6-14 plots were
sampled, each in a distinct vegetation type or
spectral  signature  identifiable on  aerial
photographs. Data were collected at 231 plots
along 32 toposequences. An additional 257
verification sites were sampled off transects for
characterizing vegetation structure and dominant
plants for use during mapping. All sample
locations were located on aerial photographs, and
coordinates (including approximate -elevations)
were obtained with a Global Positioning System
(GPS) receiver (accuracy =15 m). At each
intensive plot (~10-m radius), descriptions or
measurements of geology, surface form (micro-
and macrotopography), hydrology, soil
stratigraphy, and vegetation cover were recorded
(Appendices 1-3). Photos were taken at all sample
locations. Data and photos are archived at ABR
and NPS.

Geologic and surface-form variables recorded
included physiography, surface geomorphic unit,
slope, aspect, surface form, and height of
microrelief. Hydrologic variables measured at each
sampling site included depth of water above or
below ground surface, depth to saturated soil, pH,
and electrical conductivity (EC). Water depths
were measured with a ruler and water-quality
measurements (pH and EC) were made with
Oakton or Cole-Palmer portable meters that were
calibrated daily with standard solutions.

Soil stratigraphy was described from a
shallow soil core or soil pit at each plot. Most soil
profiles were limited to the seasonally thawed layer
(~0.5-1 m) above the permafrost and were
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described from soil plugs dug with a shovel. For all
intensive plots, the dominant mineral texture, the
depth of surface organic matter, cumulative
thickness of all organic horizons, percentage of
coarse fragments, depth to rock (>15% by volume),
and depth of thaw were recorded. When water was
not present, EC and pH were measured from a
saturated soil paste. A single simplified texture
(i.e., loamy, sandy, organic) was assigned to
characterize the dominant texture in the top 40 cm
at each plot for ecotype classification. Within a
subset of plots, however, a more complete soil
stratigraphy was described using standard methods
(SSDS 1993).

Vegetation structure and composition were
assessed semiquantitatively. Cover of each species
was visually estimated to the nearest 1%, if cover
was <10% or >90%, and to the nearest 5% for
cover >10-90%. Isolated individuals or species
with very low cover were assigned a cover value of
0.1%. A species list was compiled that included all
vascular plants and the dominant nonvascular
plants observed in the plot. Total cover of each
plant growth form (e.g., tall shrub, dwarf shrub,
lichens) was estimated independently of the cover
estimates for individual species. Data were then
cross checked to ensure that the summed cover of
individual species within a growth form category
was comparable to the total cover estimated for
that growth form. Taxonomic nomenclature
followed Viereck and Little (1972) for shrubs and
Hultén (1968) for other vascular plants, with the
exception of shrub birch. We did not distinguish
between Betula glandulosa and Betula nana, but
called both B. nana. We also used a draft floristic
inventory of the Seward Peninsula (Kelso et al.
1997) and CAKR (Carolyn Parker, Univ. Alaska
Museum, unpublished data 2003) for guidance.
Nomenclature for bryophytes and lichens followed
the National Plants Database (NRCS 2001).
Identification of mosses and lichens during field
sampling was limited to dominant, readily
identifiable species. Dominant cryptogams that
could not be identified in the field were collected
and sent to Mikhail Zhurbenko and Olga Afonina,
Komarov  Botanical Institute, Russia, for
identification. Plant species identified are listed in
Appendices 4 and 5.
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Figure 3. Sampling locations for the ecological land survey in Cape Krusenstern National Monument,

northwestern Alaska, 2003. The entire monument was included within one Landsat scene
acquired 3 August 2002.
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ECOLOGICAL CLASSIFICATION

Ecosystem classification was undertaken at
two levels. First, individual ecological components
were classified and coded using standard
classification systems developed for Alaska.
Second, these ecological components were
integrated to classify ecotypes (local-scale
ecosystems) that best partitioned the range of
variation for all the measured components.

ECOLOGICAL COMPONENTS

Geomorphic units were classified according to
a system based on landform-soil characteristics for
Alaska, originally developed by Kreig and Reger
(1982) and the Alaska Division of Geological and
Geophysical Survey (1983) and modified for this
study. We relied on previous landscape analysis of
BELA (Jorgenson 2001) and CAKR (Swanson
2001) as a guide to our identification of geomorphic
and geologic units. We made slight modifications to
these maps, however, to extend some of the
floodplain mapping farther upstream, and revised
some of the coastal and floodplain boundaries to
better coregister with the image. We emphasized
materials near the surface (<2 m) because they
have the greatest influence on ecological
processes. Within the geomorphic classification, we
also classified waterbodies based on their depth,
salinity, and genesis.

Surface forms (macrotopography) were
classified according to a system modified from that
of Schoeneberger et al. (1998). Microtopography
was classified according to the periglacial system
of Washburn (1973).

Vegetation was classified in the field to Level
4 of the Alaska Vegetation Classification (AVC)
developed by Viereck et al. (1992), with slight
modifications previously developed for tundra and
coastal classes (Jorgenson et al. 1997). After
fieldwork was completed and unknown specimens
were identified, plant associations were developed
through numeric analyses to further identify plant
communities. First, vegetation data (species cover
by plot) were ordered into species groups using
TWINSPAN (PCOrd 4.17, MjM Software
Designs). Second, sorted table analyses
(Mueller-Dombois and Ellenberg 1974) were used
to refine the groups and identify potential outlier
plots. Finally, detrended correspondence analysis
was used to chart the plots in species space to
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assess their dispersion and further identify outliers.
After groups were finalized, each plant association
was identified by a dominant and characteristic
species.

ECOTYPES

Classification of ecotypes (local-scale
ecosystems) was accomplished in three general
steps: (1) the ecological components were
individually classified for each detailed ground
description, (2) relationships along transects were
examined to illustrate trends across the landscape,
and (3) contingency tables were used to identify
the common relationships and central tendencies
among ecological components. In developing the
ecotype classes, we emphasized ecological
characteristics (primarily geomorphology and
vegetation structure) that could be interpreted from
aerial photographs. We also developed a
nomenclature for ecotypes that describes
ecological characteristics (physiography, soil
chemistry, moisture, vegetation structure, and
dominant species) using a terminology that can be
easily understood.

To reduce the number of ecotype classes, we
aggregated the field data for individual ecological
components (e.g., soil stratigraphy and vegetation
composition), using a hierarchical approach.
Geomorphic units were assigned to physiographic
settings based on their erosional or depositional
processes. Surface-forms were aggregated into a
reduced set of slope elements (crest, upper slope,
lower slope, toe, and flat). For vegetation, we used
the structural levels of the Alaska Vegetation
Classification (Viereck et al. 1992), because they
are readily identifiable on aerial photographs.
Some textural classes were grouped (e.g., sandy
and loamy) because the vegetation associated with
them was similar, and some vegetation structures
(e.g., open and closed shrub) were grouped
because their species composition was similar.
Ecotype names were then based on the aggregated
ecological components.

Common relationships among ecosystem
components were identified by use of contingency
tables. The contingency tables sorted plots by
physiography, soil texture, geomorphic unit, slope
position, drainage, soil chemistry (pH and salinity),
vegetation structure, and plant association. From
these tables, common associations were identified
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and unusual associations either were lumped with
those having similar characteristics or excluded as
unusual (outliers). The resulting final ecotypes
were used for mapping and to summarize the
ground data.

LANDCOVER MAPPING

IMAGERY AND ANCILLARY DATA SETS

Three terrain-corrected Landsat TM scenes
(28.5 m pixel resolution) were used to create the
map. The main scene, acquired 3 August 2002
(Path 81, Rows 12-14), covered all of CAKR and
the central 91% of BELA. The image was
essentially cloud-free, though some haze obscured
the Bendeleben Mountains. Scenes for the
peripheral eastern and western edges of BELA
were acquired 28 June 2000 (Path 79, Row 14) and
1 August 2002 (Path 83, Row 14), respectively.
The western image was cloud-free in the area of
interest, and the eastern image had a few small
clouds along the southern edge of the study area.
After a position analysis based on USGS digital
maps and GPS locations acquired in the field,
images were shifted 17 m west and 23 m north.
Based on GPS data, the horizontal positional
accuracy of the image is less than 1 pixel (28.5 m).

In addition to the TM imagery, several layers
were used to differentiate specific landscape and
vegetation features during post-classification
modeling.  Existing ecosubsection mapping
(Jorgenson 2001, Swanson 2001) was used to
define major physiographic and geologic regions.
Some modification was made to region boundaries
to extend floodplain delineations and correct
positional errors. Digital elevation models from the
National Elevation Dataset also were used for
modeling. Finally, vector layers were created to
partition a few specific features, such as areas of
cloud and shadow on flat terrain, forested patches
in BELA, and the road to the Red Dog Mine.

SIGNATURE EVALUATION AND SPECTRAL
DATABASE DEVELOPMENT

Satellite image processing was done using
ERDAS 8.6 software. Spectral signatures were
generated by overlaying a point file of ground truth
sites on the imagery and using region growing
tools (seeding) to group pixels of similar spectral
characteristics with associated ground-truth sites.

BELA-CAKR Landcover Mapping

In addition to the 488 sites surveyed in this study,
ground data collected from the NPS Intensive
Mapping Area Survey, 1991-1993 were used.
Region-growing parameters varied with the
characteristics associated with the ground-truth
sites, but a conservative approach was used to
restrict pixels to areas that the mapper easily
recognized as belonging to the same vegetation
type as the ground truth site. The spectral Euclidian
distance and total number of pixels within the
region were used as primary parameters. Euclidian
distances commonly were between 5 and 10,
though some particularly homogenous areas were
lower, and seeded regions typically were less than
20 pixels. Small, distinct features such as beach
fringe or gravel bars were allowed larger Euclidian
distances, and large homogenous areas, such as
large water bodies, were allowed larger regions. A
minimum of seven pixels was required for a valid
signature. Seeded regions were added to a
signature file if they met these basic parameters
and appeared to represent a homogenous photo
signature on the satellite image and airphotos for
the ground class. A total of 574 signatures were
created using ground data and photo interpretation.
Of the 60 vegetation classes identified in the
ground data, spectral signatures were assigned to
56. The four classes not included in the signature
file were Four-leaf Marestail, Dry Forb Meadow,
Mixed Herbs, and Open Dwarf White Spruce. The
few examples of these classes described by the
ground data were either in areas too small or too
heterogeneous to generate good signatures. One
class was added based on the NPS Intensive
Mapping Area Survey data, Open Tall
Alder—Willow, yielding spectral signatures for 57
vegetation classes based on ground data.

A spectral database was created by exporting
the spectral data for each signature, including mean
and standard deviation for each spectral band, into
an ACCESS database. Ground data associated with
each signature, including plot identifier, vegetation
class, ecotype class, vegetation cover by canopy
structure, organic layer depth, slope, and percent
cover of the most abundant 70 species in the region
were added where available. A normalized
difference vegetation index (NDVI) also was
calculated for each signature and added to the
database.



Signatures were evaluated by testing the
inherent quality of the spectral information
associated with the signature and by assessing the
relationships of the signatures to vegetation
classes. Analyses used in the signature evaluation
included analysis of: (1) the variability of spectral
bands for each signature, (2) the fidelity of the
signature to the ground information, (3) the central

tendencies and overlap of signatures within
preliminary ground vegetation classes using
principal components analysis, and (4) the

association of ground vegetation classes within and
among spectral clusters. The results were
incorporated into the database.

To assess the spectral variability of each
signature, a mean coefficient of variation was
calculated for each band for each signature and the
results averaged. Signatures with <10% mean
variation were judged acceptable the remaining
signatures were identified for further evaluation.
Exceptions were made for signatures describing
Water and Partially Vegetated areas as these classes
have high inherent variability. All signatures with
coefficients >10% were evaluated by case and
retained or excluded based on the results of the
analysis described below.

To assess the fidelity of the signature to the
ground information, a contingency table was
generated based on a maximum likelihood
classification of all signature areas using ERDAS
signature evaluation routines. The number of
pixels classified to the same signature as that
developed from the corresponding signature area
was calculated. The resulting matrix of input
signature by classified signature area provided a
measure of the ability of signatures to map
correctly to themselves. We extended this analysis
to show signature fidelity to the vegetation classes
assigned to them based on the ground data.
Signatures where >80% of the pixels classified to
the correct vegetation class within a signature area
were considered acceptable. A few signatures of
infrequently occurring ground vegetation classes
that had less fidelity to their vegetation class were
retained on a case by case basis because they
classified accurately to a closely related class. We
preserved these signatures because we anticipated
the need of merging unusual classes with those
classes more frequently observed. Examples of
these low fidelity signatures included a signature
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for Moist Sedge—Willow Meadow that mapped
well to Moist Sedge—Dryas Meadow, and a
signature for Closed Low Willow that mapped well
to Open Low Willow. The two analysis of spectral
quality resulted in the elimination of 117
signatures.

To assess the central tendencies and overlap of
spectral characteristics of signatures among the
initial 57 ground vegetation classes, principal
components analysis (PCA) was wused in
conjunction with cluster analysis (PCOrd 4.17,
MjM Software Designs). Results were then used
to aggregrate ground vegetation classes with
similar spectral and vegetative characteristics into
a reduced set of signature vegetation classes. A
PCA of the signatures using band data with NDVI
was conducted on the 457 signatures remaining
after the basic signature evaluation to reduce the
variability in signatures to two dimensions and
identify outliers within ground vegetation classes.
The center of each vegetation class was calculated
based on the first two PCA axes, and a distance
from the center in axis space was calculated for
each signature within the vegetation class. The
signatures for each vegetation class were ranked
according to their proximity to the center of the
vegetation class. The 20% of signatures with the
lowest rank (farthest from the center of each
vegetation group) were identified as potential
outliers. The potential outliers were evaluated for
spectral (see cluster analysis below) and plant
association (see Ecological Components) similarity
and compared with the main characteristics of the
vegetation class. While we recognize that some
legitimate signatures may have been lost through
this analysis, we believe it more important to
reduce the potential for misclassifying pixels in the
neighborhood of vegetation class outliers than to
preserve the outliers themselves.

As another measure for assessing how unique
the spectral characteristics were for each ground
vegetation class, cluster analysis of band data and
NDVI (PCOrd 4.17) was used to group the spectral
characteristics of all 574 signatures into clusters, or
nodes. A dendrogram with hierarchical linkages
partitioned the variability into 66 nodes. The nodes
then were cross-tabulated with the ground
vegetation classes to identify the frequency with
which vegetation types were associated with
individual spectral nodes. Signatures within nodes
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that were strongly associated with a particular
vegetation class (the dominant vegetation type for
the node) were considered valid. Signatures for
vegetation classes not consistent with the dominant
vegetation type represented by the node were
identified for further evaluation. Plant
associations, PCA, and cluster analysis nodes were
used to group poorly differentiated ground
vegetation classes with the most appropriate class
or to reject signatures as invalid. Sixty-five
signatures were ecliminated after the PCA and
cluster analysis.

Based on the results of these multivariate
analyses of spectral characteristics, the similarity
of species composition, and the relative abundance
of the vegetation types in the study area, we
consolidated the original 57 ground vegetation
classes (AVC Level 4) into 18 signature vegetation
classes. Signatures with ground vegetation classes
poorly defined by the multivariate analysis were
merged with other vegetation classes of similar
species composition, landscape position, and
spectral characteristics. Four ground vegetation
classes were eliminated through the signature
verification process because the signatures
associated with them did not self classify (Cassiope
Dwarf Shrub Tundra, Vaccinium Dwarf Shrub
Tundra, Open Low Alder, Open Low
Alder—Willow) and one class was eliminated
because signatures did not self classify or were
defined as outliers by the PCA (Wet Sedge—Birch
Tundra). Major vegetation class consolidations
included merging 13 low shrub classes into 4, 7
dwarf shrub classes into 2, and 5 lowland wet
sedge classes into 2 (Appendix 6). Some ground
vegetation classes were split among several
signature vegetation classes as dictated by their
spectral characteristics and results of the
multivariate analysis. For example, the ground
vegetation class Dryas—Sedge Dwarf Shrub Tundra
was merged with either Dryas Dwarf Shrub Tundra
or Moist Sedge—Dryas Tundra, depending upon
each signature plant association and results of the
multivariate analysis. The final classification set
included 389 spectral signatures and 18 signature
vegetation classes. The original 574 signatures,
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however, were retained in the complete spectral
database.

IMAGE CLASSIFICATION

Supervised classification of the main scene
was done with a fuzzy classification using the
389-signature classification set. We chose to use a
fuzzy classification and convolution because we
wanted to minimize the occurance of isolated,
single pixels that might result from the
classification of pixels with mixed spectral
signatures. The reduced graininess produced from
this supervised classification method makes the
map more amenable for analysis and land
management. An initial maximum likelihood
classification resulted in a highly pixelated map
that appeared, in some areas, to impart diversity
that was not observed on the ground. Much of this
pixelation is due to overlap in spectral
characteristics among similar vegetation classes
and the spectral diversity within classes. The fuzzy
classification and convolution routines provided a
method by which secondary as well as best
classifications for each pixel could be considered
and weighed against surrounding pixels to provide
a more useful classification. The fuzzy
classification was based on a maximum likelihood
routine and classified the 3 best classes per pixel. A
fuzzy convolution was performed on the resulting
classification using 2 fuzzy classification layers
and a 3 x 3 pixel window. The window used a 0.34
equal weighting factor for all 8 adjoining pixels.
We selected the parameters of our fuzzy
classification and convolution conservatively to
allow mixed pixels to be classified with similar
neighbor pixels while preserving the classification
of individual pixels with strong spectral signatures
dissimilar from their neighbors. After the fuzzy
convolution was completed, we recoded the
classification using the 18 signature vegetation
classes to produce a vegetation classification based
on the relationships between signatures and
vegetation classes identified in the spectral
database.



RULE-BASED MODELING

Rule-based modeling (ERDAS Knowledge
Engineer) was used to reclassify the supervised
classification into 29 ecotypes (Appendices 7 and
8). Inputs to the rules included the classes resulting
from the fuzzy convolution, the signature
vegetation classification created by recoding the
fuzzy convolution, ecosubsection regions, DEM
analyses, and specifically generated vector layers
(see above). Each ecotype was defined as a
collection of signature vegetation classes and/or
fuzzy convolution classes within a particular group
of physiographic regions. In this way, the
vegetation class Open Low Willow Shrub was
defined as Lowland Moist Low Willow on coastal
plains and in small drainages, Riverine Moist Low
and Tall Willow Shrub on floodplain deposits, and
Upland Moist Low Willow on upper slopes.
Signature vegetation classes such as Halophytic
Sedge—Grass Wet Meadow were redefined in
non-coastal areas, and shadows on alpine slopes,
frequently classified as Water, were redefined
using a slope rule. Results of the multivariate
analysis, particularly the principal components
cluster nodes, were used along with photo
interpretation to assign an appropriate ecotype to
signature vegetation classes that occurred outside
their normally associated region. Occasionally,
ecotype classes were assigned to individual fuzzy
classes when their associated signature vegetation
class was broadly distributed. We classified the
road to the Red Dog mine in CAKR, by digitizing
the road and designating the Partially Vegetated
class within that region as Human Modified
Barrens. The completed knowledge-based rule file
defines each mapped ecotype by its associated
signature vegetation class or fuzzy convolution
class, the associated physiographic region, and any
pertinent DEM or vector layers. After the
knowledge-based classification was finished and
the ecotype map was completed, we generated a
vegetation map derived from the ecotype classes in
order to create a vegetation layer corrected by the
rule-based modeling. Seventeen classes are
presented in the ecotype-derived vegetation map,
compared with 18 signature vegetation classes,
because low and tall willow classes were combined
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in the Riverine Moist Low and Tall Willow Shrub
ecotype.

PERIPHERAL IMAGE CLASSIFICATION

The classification of the peripheral images
was done through correlation of the spectral classes
of the peripheral image with those in the main
image. This method was used because the the two
peripheral areas were relatively small, their
vegetation was similar, and fieldwork to develop
full training sets was not practical because of
funding and logistical constraints. The peripheral
east and west scenes for BELA were classified
using a combination of unsupervised and
rule-based classification. Each scene was classified
into 100 classes using an unsupervised (ISODATA)
classification. In the areas of overlap between the
main scene and the peripheral images, a
contingency matrix was generated, and each
unsupervised class was assigned the most common
class from the fuzzy convolution in the main
image. The wunsupervised -classifications were
recoded with the fuzzy convolution classes from
the main scene and also with signature vegetation
classes. The east and west scenes were run through
the rule-based classification generated for the main
scene and the results examined for consistency
with the main image. New knowledge-base files
were created for east and west images and
fine-tuned to minimize inconsistencies among
images. Finally, a minimal cluster size was
specified for each edge scene based on consistency
of appearance with the main classification, 2 pixels
for the west and 3 for the east, with smaller pixel
size groups eliminated. The peripheral scenes were
then merged with the main image.

ACCURACY ASSESSMENT

We assessed the quality and consistency of the
classification process using four methods. First,
after applying region growing tools, signature
quality was determined by how well the signatures
classified to themselves (e.g., the number of pixels
within the seeded area for signature 180 classified
as 180) and to the ground vegetation type (e.g.,
signature 180 was correctly classified as Dryas
Dwarf Shrub Tundra) prior to the supervised
classification (see section above on signature
evaluation). Second, the results of the principal
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components analysis were reviewed to assess the
separability of the signatures or overlap among
signature vegetation types. Third, spectral nodes
generated from cluster analysis (aggregations of
signatures) were cross-tabulated with signature
vegetation classes to assess the degree to which
signature vegetation was consistently associated
with certain spectral signatures. Finally, the
ecotypes and mapped vegetation types were
cross-tabulated with the field survey data to
quantify the consistency of the map with the
ground data. Although we did not have
independent points to assess the true accuracy of
the mapping, we believe the combination of
validating the relationships between spectral
characteristics and vegetation and assessing the
consistency of the mapping with a large set of
widely distributed data points, provide good
measures for approximating the overall accuracy of
the classification and mapping effort. A full,
independent accurary assessment was not done
because of funding constraints.

BELA-CAKR Landcover Mapping
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RESULTS

CLASSIFICATION AND DESCRIPTION OF
ECOTYPES AND PLANT ASSOCIATIONS

Descriptions of the 33 ecotypes and their
respective plant associations are given below and
include information on distribution and landscape
setting, soil characteristics, plant associations and
dominant plant species. Vegetation cover values
are provided after the ecotype descriptions in
Tables 1-30. Usually, each ecotype corresponds to
a unique plant association, however, 4 ecotypes
had two plant associations. Tables with the
vegetation cover separated by plant association
within ecotype are provided in Appendix 14. There
were a total of 31 plant associations.

ALPINE ALKALINE DRY BARRENS

Plant Associations:

Dryas octopetala—Potentilla uniflora

Barren (<5% cover) to partially vegetated
(5-30%) areas on exposed carbonate bedrock and
unstable colluvial slopes at high elevations (~>700
m). Bedrock includes both sedimentary (limestone,
dolostone) and metamorphic (marble) carbonate
rocks. Soils are thin, rocky, well to excessively
drained, and alkaline (pH 7.4). There is no surface
organic horizon.

Scattered vegetation is dominated by dwarf
shrubs including Dryas octopetala, Dryas
integrifolia, and lichens, particularly FEvernia
perfragilis and Flavocetraria spp. Associated
species include Saxifraga oppositifolia,
Lesquerella arctica, Potentilla uniflora,
Hedysarum mackenzii, and Oxytropis nigrescens.
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Table 1. Vegetation cover and frequency for
Alpine Alkaline Dry Barrens (n=6).

Cover Freq
Mean SD (%)
Total Live Cover 222 6.7 100
Total Vascular Cover 15.8 3.4 100
Total Evergreen Shrub Cover 9.7 0.8 100
Dryas integrifolia 1.3 33 17
Dryas octopetala 8.3 4.1 83
Total Deciduous Shrub Cover 0.1 0.1 50
Salix arctica 0.0 0.0 17
Salix rotundifolia 0.0 0.0 17
Total Forb Cover 49 24 100
Androsace chamaejasme 0.0 0.1 33
Artemisia furcata 0.2 0.4 83
Artemisia senjavinensis 0.0 0.1 33
Bupleurum triradiatum 0.1 0.1 50
Hedysarum mackenzii 0.6 0.8 83
Lesquerella arctica 0.1 0.0 83
Minuartia arctica 0.2 0.4 33
Oxytropis arctica 0.4 0.5 50
Oxytropis nigrescens 0.3 0.4 50
Phlox sibirica sibirica 0.4 0.5 67
Potentilla uniflora 0.8 0.4 83
Saussurea angustifolia 0.2 0.4 50
Saxifraga oppositifolia 0.9 0.9 100
Taraxacum phymatocarpum 0.0 0.1 33
Total Grass Cover 0.0 0.0 17
Total Sedge Cover 1.1 0.9 100
Carex petricosa 0.3 0.8 17
Carex rupestris 0.2 0.4 33
Carex scirpoidea 0.0 0.1 33
Carex sp. 0.4 0.5 50
Kobresia sp. 0.2 0.4 17
Total NonVascular Cover 6.4 52 100
Total Moss Cover 0.3 0.4 67
Ctenidium procerrimum 0.0 0.1 17
Distichium capillaceum 0.0 0.0 17
Total Lichen Cover 6.1 5.0 100
Alectoria nigricans 0.2 0.4 17
Alectoria ochroleuca 0.4 0.5 50
Asahinea chrysantha 0.1 0.1 33
Bryocaulon divergens 0.2 0.4 17
Cetraria tilesii 0.2 0.4 67
Cladina sp. 0.1 0.2 17
Evernia perfragilis 0.2 0.4 50
Flavocetraria cucullata 0.2 0.4 67
Flavocetraria nivalis 0.5 0.5 67
Nephroma arcticum 0.2 0.4 33
Ochrolechia frigida 0.8 1.3 33
Pertusaria sp. 0.2 0.4 17
Thamnolia subuliformis 0.7 1.6 17
Thamnolia vermicularis 1.2 1.3 83
Total Bare Ground 88.5 3.6 100
Soil 850 45 100
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Table 2. Vegetation cover and frequency for Alpine

Alkaline Dry Dryas Shrub (n=13).

ALPINE ALKALINE DRY DRYAS

SHRUB
Cover Freq
| Mean SD (%)
Total Live Cover 96.1 46.8 100
Total Vascular Cover 60.8 20.0 100
Total Evergreen Shrub Cover 44.1 15.2 100
Cassiope tetragona 2.6 43 54
Dryas integrifolia 14.6 20.4 38
Dryas octopetala 21.2 23.5 54
Rhododendron lapponicum 0.6 1.4 54
Total Evergreen Tree Cover 0.4 1.4 8
Picea glauca 0.4 1.4 8
Total Deciduous Shrub Cover 5.2 5.8 69
Andromeda polifolia 0.2 0.4 31
Arctostaphylos rubra 1.8 2.1 54
Salix arctica 1.9 2.6 54
Salix reticulata 0.8 1.4 46
Total Forb Cover 7.3 2.5 100
Androsace chamaejasme 0.0 0.1 46
Artemisia furcata 0.1 0.3 54
Equisetum variegatum 0.2 0.6 31
L. Hedysarum alpinum 0.5 1.0 31
Plant Associations: Hedysarum mackenzii 0.4 09 46
Dryas integrifolia—Rhododendron lapponicum; Lagotis glauca 01 03 23
. . Minuartia sp. 0.1 0.3 31
Dryas octopetala—Potentilla uniflora Oxytropis nigrescens 0.1 0.3 23
Pedicularis capitata 0.1 0.3 54
. Phlox sibirica sibirica 0.2 0.6 23
Areas on carbongte bedroclf and relatively Polygonum viviparum 01 03 62
stable slopes at high elevations (~>700m) Potentilla biflora 0.4 1.0 23
dominated by dwarf shrub vegetation. Soils are (oo PO
alkaline (pH 7.4), rocky, and well drained with a Saxifraga oppositifolia 12 0.9 77
thin organic horizon. Silene acaulis 0.2 0.4 62
Vegetation is dominated by dwarf shrubs and ;ZJJZZZZ;Z?%EH gé 8'431 gg
lichens including Dryas integrifolia (mostly south Total Grass Cover 0.3 0.6 62
slopes), or D. octopetala, Thamnolia vermicularis, f;’”cmgmslﬁs latifolia g-; g-z g
. .. . estuca altaica . .
Ochrolechia  frigida, =~ Nephroma  arcticum, Total Sedge Cover 35 24 100
Flavocetraria cucullata, and F. nivalis. Other Carex bigelowii 0.3 0.7 23
species include Cassiope tetragona, Potentilla Carex membranacea 02 04 23
R . Carex nardina 0.3 0.6 38
uniflora,  Arctostaphylos — rubra,  Rhytidium Carex scirpoidea 12 1.9 54
rugosum, and Tomentypnum nitens. Eriophorum angustifolium 0.2 0.4 23
The first plant association is dominated by ig::: l;,l‘:)';:]acs(f:el:r Cover 3§g 35'(3) 133
D}'yaS lntegr{f‘olla and dlffel‘el’ltlated by the Hylocomlum splendens 1.2 3.0 15
common occurrence of Rhododendron f;hytidi“m rugosum ;-2 z; ;‘g
. . . . omentypnum nitens . .
lapgomcum. .Other. common species include Salix Total Lichen Cover 281 290 100
arctica, Salix reticulata, Arctostaphylos rubra, Alectoria ochroleuca 0.9 1.6 38
Carex scirpoidea, Tomentypnum nitens and g’zoc‘f“l?’; d’;‘?’ge’? 3-2 g-g 4212
. .o etraria islandica ¢ . .
Rhytidium rugosum. The second plant association Cetraria tilesii 02 04 38
is dominated by Dryas octopetala and Dactylina arctica 0.4 09 46
differentiated by the presence of Potentilla Flavocetraria cucullata 37 26 T
] A ] Flavocetraria nivalis 1.9 1.8 69
uniflora. Other common species include Saxifraga Masonhalea richardsonii 02 0.4 23
oppositifolia, Artemisia  furcata, Hedysarum Nephroma arcticum 32 11l 23
" i and L 1l fi Ochrolechia frigida 2.6 4.7 46
mac en?ll’ esgue.re. aarc lca'_ . Thamnolia vermicularis 3.7 4.3 92
This ecotype is similar to Alpine Nonalkaline Vulpicida tilesii 0.3 0.6 31
Dry Dryas Shrub, but lacks the acidiphilic species cotal Bare Ground B
Salix phlebophylla and Hierochloe alpina. Litter alone 195 196 100

BELA-CAKR Landcover Mapping
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ALPINE NONALKALINE DRY

Plant Association:
Dryas octopetala—Salix phlebophylla— Hierochloe
alpina

Barren to partially vegetated (<30% cover)
areas on exposed noncarbonate bedrock and talus
slopes at high elevations (~>700 m). Bedrock
includes felsic intrusive, noncarbonate
metamorphic, and noncarbonate sedimentary rocks
that generally have low calcium and magnesium
and high aluminum concentrations that lead to
acidic soils. Soils are thin, rocky, well to
excessively drained, lacking in surface organic
accumulations, and acidic to circumneutral
(pH <7.4).

The vegetation is dominated by lichens and
has a wide variety of colonizing plants. Common
species include Dryas  octopetala,  Salix
phlebophylla, Hierochlée  alpina, Carex
podocarpa, Geum glaciale, Alectoria ochroleuca,
Sphaerophorus globosus, Thamnolia vermicularis,
and Cladonia spp.

This ecotype is similar to Alpine Alkaline Dry
Barrens, but lacks the calciphilic species Saxifraga
oppositifolia, Potentilla uniflora, Hedysarum
mackenzii, and Oxytropis nigrescens.

15

Results

Table 3. Vegetation cover and frequency for Alpine
Nonalkaline Dry Barrens (n=7).
Cover Freq
Mean SD (%)

Total Live Cover 51.1  30.1 100
Total Vascular Cover 5.7 53 85
Total Evergreen Shrub Cover 1.6 2.1 71
Cassiope tetragona 0.4 0.7 42
Diapensia lapponica 0.4 0.8 42
Dryas octopetala 0.6 1.0 28
Total Deciduous Shrub Cover 1.1 1.2 85
Arctostaphylos alpina 0.1 0.4 14
Salix phlebophylla 0.9 1.2 71
Total Forb Cover 1.6 1.9 71
Artemisia arctica arctica 0.3 0.8 14
Geum glaciale 0.3 0.8 28
Saxifraga sp. 0.2 0.4 42
Selaginella selaginoides 0.1 0.4 14
Silene acaulis 0.3 0.5 28
Total Grass Cover 0.2 0.4 42
Hierochlée alpina 0.2 0.4 42
Total Sedge Cover 1.2 1.8 71
Carex bigelowii 0.3 0.5 28
Carex podocarpa 0.9 1.9 42
Total NonVascular Cover 454  30.1 100
Total Moss Cover 2.6 43 85
Eurhynchium pulchellum 0.1 0.4 14
Hylocomium splendens 0.3 0.8 14
Hypnum holmenii 0.1 0.4 14
Plagiomnium curvatulum 0.1 0.4 14
Polytrichum sp. 0.7 1.9 42
Racomitrium lanuginosum 0.7 1.9 14
Total Lichen Cover 428 278 100
Alectoria nigricans 0.2 0.4 42
Alectoria ochroleuca 0.6 1.1 57
Cetraria islandica cf 0.6 1.1 28
Cetraria nigricans 0.2 0.4 42
Cetraria sp. 0.2 0.4 14
Cladina rangiferina 0.1 0.4 14
Cladina stygia 0.4 1.1 28
Cladonia coccifera 0.0 0.1 14
Cladonia gracilis 0.0 0.1 14
Cladonia sp. 0.3 0.5 71
Dactylina arctica 0.0 0.1 28
Flavocetraria cucullata 0.6 1.1 28
Flavocetraria nivalis 0.2 0.4 28
Ochrolechia frigida 0.5 1.1 28
Parmelia omphalodes 3.0 7.5 28
Rhizocarpon geographicum 1.0 1.2 57
Sphaerophorus fragilis 0.1 0.4 14
Sphaerophorus globosus 0.1 0.1 57
Thamnolia vermicularis 0.3 0.5 71
Umbilicaria sp. 0.2 0.4 28
Umbilicaria torrefacta 1.4 2.4 28
Unknown crustose lichen 13.7  19.1 71
Unknown foliose lichen 143 251 28
Xanthoria sp. 1.1 1.9 42
Total Bare Ground 67.0 248 100
Soil 65.7 239 100
Litter alone 1.3 1.8 71
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Results

ALPINE NONALKALINE DRY DRYAS
SHRUB

Plant Association:
Dryas octopetala—Salix phlebophylla—Hierochloe
alpina

Crests and slopes at high -elevations
(~>700 m) on noncarbonate bedrock and
colluvium dominated by dwarf shrub vegetation.
Soils are rocky, well to excessively drained, have
very thin surface organic accumulations, and are
strongly acidic (pH <6).

Vegetation is dominated by dwarf shrubs,
sedges, and lichens including Dryas octopetala,
Salix phlebophylla, Loiseleuria procumbens, and
Carex podocarpa. Associated species include Salix
planifolia pulchra, Hierochlée alpina,
Sphaerophorus globosus, Nephroma arcticum, and
Flavocetraria cucullata.

This ecotype differs from Alpine Alkaline Dry
Dryas Shrub by lacking the calciphilic species
Saxifraga  oppositifolia,  Potentilla  uniflora,
Hedysarum mackenzii, and Oxytropis nigrescens.
It differs from Upland Moist Dwarf
Birch—Ericaceous Shrub by lacking Betula nana
and Ledum decumbens.

BELA-CAKR Landcover Mapping

Table 4. Vegetation cover and frequency for Alpine
Nonalkaline Dry Dryas Shrub (n=8).
Cover Frea
Mean __ SD (%)

Total Live Cover 82.7 19.0 100
Total Vascular Cover 44.6 16.2 100
Total Evergreen Shrub 23.1 12.3 100
Cassiope tetragona 2.1 3.6 50
Diapensia lapponica 2.1 2.5 50
Dryas octopetala 13.8 14.1 87
Empetrum nigrum 0.5 0.8 37
Ledum decumbens 0.4 0.7 37
Loiseleuria procumbens 33 5.3 62
Vaccinium vitis-idaea 0.9 1.8 37
Total Deciduous Shrub 10.4 6.9 100
Salix phlebophylla 6.8 4.0 100
Salix planifolia pulchra 0.5 0.5 75
Vaccinium uliginosum 1.7 3.5 62
Total Forb Cover 4.5 3.8 100
Anemone narcissiflora 0.4 0.5 62
Antennaria friesiana 0.3 0.4 50
Arnica lessingii 0.2 0.3 37
Artemisia arctica arctica 0.5 0.8 37
Castilleja hyperborea 0.2 0.3 37
Oxytropis arctica 0.3 0.7 37
Polygonum bistorta 0.2 0.3 37
Selaginella selaginoides 1.0 1.6 37
Total Grass Cover 1.2 1.3 100
Hierochlée alpina 0.8 1.0 100
Trisetum spicatum 0.2 0.3 37
Total Sedge Cover 53 5.2 100
Carex bigelowii 0.8 1.2 37
Carex microchaeta 0.5 1.1 25
Carex podocarpa 3.0 5.6 50
Luzula sp. 0.2 0.4 37
Total NonVascular Cover 38.2 20.7 100
Total Moss Cover 6.6 4.7 100
Dicranum sp. 1.1 1.4 50
Polytrichum sp. 1.6 1.9 50
Polytrichum strictum 1.0 1.8 37
Racomitrium lanuginosum 0.4 0.7 25
Rhizomnium sp. 1.3 2.3 25
Total Lichen Cover 31.6 17.8 100
Alectoria ochroleuca 0.3 0.5 37
Asahinea chrysantha 0.3 0.7 25
Bryvocaulon divergens 0.4 0.7 50
Cetraria islandica cf 0.9 1.8 25
Cladina mitis 1.4 2.4 37
Cladina rangiferina 1.3 1.9 37
Cladina stygia 0.9 2.5 25
Cladonia sp. 0.5 0.8 37
Flavocetraria cucullata 2.3 35 87
Flavocetraria nivalis 0.8 1.0 62
Nephroma arcticum 0.4 0.7 50
Parmelia omphalodes 53 9.9 37
Pertusaria dactylina 0.4 0.5 37
Pertusaria subobducens 3.1 4.6 37
Rhizocarpon geographicum 1.3 3.5 12
Sphaerophorus globosus 1.3 1.0 87
Stereocaulon sp. 0.6 0.9 37
Thamnolia vermicularis 0.8 0.7 87
Umbilicaria spp. 0.6 1.8 25
Unknown crustose lichen 1.1 2.1 25
Unknown lichen 2.3 3.7 37
Total Bare Ground 58.8 17.6 100
Soil 353 25.7 100
Litter alone 23.3 19.1 100




Results

Table 5. Vegetation cover and frequency for

Upland Dry Lichen Barrens (n=4).

UPLAND DRY LICHEN BARRENS

Cover Freq

Mean SD (%)

Total Live Cover 109.7 104 100

Total Vascular Cover 7.3 11.7 100

Total Evergreen Shrub Cover 2.7 3.7 100

Empetrum nigrum 0.8 0.9 100

Ledum decumbens 0.3 0.5 75

Loiseleuria procumbens 1.6 2.3 100

Total Deciduous Shrub Cover 4.0 74 100

Alnus crispa 0.5 1.0 50

Betula nana 2.5 5.0 25

Salix planifolia pulchra 0.3 0.5 25

Vaccinium uliginosum 0.6 1.0 100

Total Forb Cover 0.1 0.1 75

Potentilla fruticosa 0.1 0.1 50

. Saxifraga bronchialis 0.0 0.1 25

TS Saxifraga tricuspidata 0.0 0.1 25

Plant Association: Total Grass Cover 0.4 0.6 75

Betula nana—Ledum decumbens—Loiseleuria Festuca rubra 0.0 0.1 25

procumbens Hierochloe alpina 0.3 0.5 50

Total Sedge Cover 0.1 0.1 75

. . Carex sp. 0.1 0.1 50

Crests aI,ld SIOPGS. of colluvial materlal. or Total NonVascular Cover 102.5 11.1 100

recent volcanic deposits at moderate elevations Total Moss Cover 0.4 04 100

with less than 30% cover of vascular plants. In the Polytrichum hyperboreum 0.0 0.1 25

study area the largest expanse of Upland Dry Racomitrium lanuginosum 0.3 0.5 100

Lichen Barrens is found within the Imuruk Lava E’“‘: Lichen Cover 10%; 1;2 1(5)8
. . .. ecloria nigricans . .

Flows in BELA. Exposeq rocks are .alka.h ohvmg Alectoria ochroleuca 33 48 75

basalt and vent deposits, there is little soil Bryocaulon divergens 20 24 75

development. Soils on colluvial slopes are rocky, Cetraria islandica cf 0.8 1.0 50

excessively to well drained, circumneutral and Cetraria nigricans 0.1 0.1 50

have little to no organic horizons. On lava flows, Cetrariclla delisei 0.3 05 25

i lacki limited 11 Cladina arbuscula 0.8 1.5 50

soils are lacking or imited to small lower Cladina mitis 03 05 25

microsites. Cladina sp. 0.5 1.0 25

Vegetation is dominated by foliose and Cladina stellaris 145 238 75

fruticose lichens with only low cover of vascular Cladina stygia 1.3 2525

plants. Frequently occurring species include Cladonia coccifera 1.0 1450

Betul Led d b Loiseleuri Cladonia nipponica 0.5 0.6 50

etula  nana, eaum ecum ens, oise ?L{rla Flavocetraria cucullata 0.8 0.9 75

procumbens, — Empetrum  nigrum,  Vaccinium Flavocetraria nivalis 1.5 1.7 50

uliginosum, Racomitrium lanuginosum, Nephroma arcticum 0.1 0.1 50

Umbilicaria  hyperborea,  Cladina  stellaris, Ochrolechia frigida 17.5 350 25

Flavocetraria spp., and Alectoria ochroleuca. Ophioparma lapponica 3.8 750025

Thi differs Alpine Nonalkali Pseudephebe pubescens 1.3 2.5 25

18 ecotype differs r.om pine Nonalka ?ne Rhizocarpon geographicum 2.5 2.9 50

Dry Dryas Shrub by lacking the common alpine Thamnolia vermicularis 1.0 0.8 100

species Salix phlebophylla, Hierochlée alpina and Umbilicaria hyperborea 163 263 50

Selaginella selaginoides. 1t differs from Upland Unknown crustose lichen 163 293 50

Moist Dwarf Birch-Ericaceous Shrub by lacking Unknown foliose lichen 6.3 95 30

. p . . R Xanthoria sp. 7.5 9.6 50

Salix planifolia pulchra and high cover of Cladina Total Bare Ground 138 93 100

stellaris, Ochrolechia spp., and Umbilicaria spp. Soil 12.5 9.6 100

Litter alone 1.3 0.5 100
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Results

Table 6. Vegetation cover and frequency for

Upland Moist Spruce Forest (n=3).

UPLAND MOIST SPRUCE FOREST

Cover Freq

Mean SD (%)

Total Live Cover 169.0 43.7 100

Total Vascular Cover 112.3 150 100

Evergreen Tree 18.3 2.9 100

Picea glauca 18.3 2.9 100

Total Evergreen Shrub Cover 53 5.0 67

Dryas integrifolia 1.7 2.9 33

Empetrum nigrum 1.7 1.5 67

Vaccinium vitis-idaea 0.7 1.2 33

Total Deciduous Shrub Cover 46.3 17.1 100

Arctostaphylos alpina 33 5.8 33

Betula nana 33 5.8 33

Salix glauca 5.0 8.7 33

Salix lanata richardsonii 10.0 8.7 67

Salix planifolia pulchra 20.0 13.2 100

Salix reticulata 1.3 1.5 67

Vaccinium uliginosum 33 2.9 67

Total Forb Cover 34.8 27.2 100

Plant Association: Anemone richardsonii 1.0 1.7 67
. QT poge Epilobium angustifolium 0.7 0.5 100
Picea glauca—Salix planifolia pulchra Equisetum arvense 10.0 173 3
Equisetum scirpoides 0.1 0.1 67

Gentle to steep, upper and lower slopes on Petasites frigidus 8.3 7.6 67
colluvial glacial till deposits, but most often Polygonum viviparum 0.4 06 67
. . . Potentilla fruticosa 33 5.8 33
associated with carbonate bedrock. The soils are Rubus chomaemorus 57 3.1 67
rocky to loamy, moderately well to poorly drained, Saussurea angustifolia 0.7 12 33
alkaline to circumneutral and have moderately Valeriana capitata 0.4 0.6 67
thick organic horizons and active-layer thickness. Zygadenus elegans 1.0 L7 33
he f Iv al h b dari Total Grass Cover 0.8 0.6 100
The forests occur only along the eastern boundaries Calamagrostis canadensis 0.4 0.6 67
of CAKR and BELA. Total Sedge Cover 6.7 7.2 100
The vegetation has an open to woodland Carex bigelowii 5.7 8.1 67
canopy of Picea glauca and a shrub understo Carex krausei 1.0 17 33
d .py d by S. lfg lanitoli Ich d s lr'y Total NonVascular Cover 56.7 28.7 100
ominate y oatix p amfo la puic ra_an. atix Total Moss Cover 55.0 30.0 100
lanata richardsonii. Other common species include Aulacomnium palustre 8.3 10.4 67
Salix glauca, Equisetum arvense, Petasites Brachythecium erythrorrhizon 0.7 12 33
frigidus, Carex bigelowii, Hylocomium splendens, gig ZZZZ ‘Slggusmm (1); ;g gg
Tomentypnum nifen.s, ar}d Aulacomnium palustre. Drepanoclazz;us sp. 10 17 33
The plant association is poorly understood and Hylocomium splendens 18.3 18.9 100
probably can be subdivided into an upland alkaline Paludella squarrosa 1.0 L7 33
type and a lowland willow-dominated type. Pleurozium schreberi 2.0 2667
K . Ptilidium ciliare 2.0 2.6 67

This ecotype differs from‘all others l?y the Rhizomnium sp. 1.7 2.9 33
presence of at least 10% white spruce in the Sanionia uncinata 1.7 29 33
canopy. There may be some shrub ecotypes where Tomentypnum nitens 150 150 67
scattered trees are present but tree cover never Total Lichen Cover 17 2.0 100
o Cladonia sp. 1.0 1.7 33

exceeds 10%. Peltigera aphthosa 0.7 0.5 100
Total Bare Ground 222 7.4 100

Soil 0.4 0.6 67

Water 0.2 0.3 33

Litter alone 21.7 7.6 100

BELA-CAKR Landcover Mapping
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UPLAND MOIST LOW WILLOW
SHRUB

Plant Association:

Salix glauca—Dryas integrifolia

Gentle to moderate slopes on well-drained,
weathered bedrock, colluvium, and glacial till with
vegetation dominated by low shrubs (0.2-1.5 m
tall). Soils are rocky to loamy, moderately well
drained, circumneutral, and have thin to
moderately thick organic horizons and moderately
deep (40—80 cm) active layers.

Vegetation has an open to closed canopy of
Salix glauca and/or S. planifolia pulchra. Other
common plants include Dryas integrifolia, Dryas
octepetela, Vaccinium uliginosum, Salix reticulata,
and Carex bigelowii. Common mosses and lichens
include  Hylocomium  splendens, Cladina
arbuscula, and Cetraria islandica.

This ecotype differs from Lowland Moist Low
Willow Shrub by lacking Petasites frigidus,
Polemonium acutiflorum, and Carex aquatilis. It
differs from Upland Dwarf Birch—Ericaceous
Shrub by lacking Ledum decumbens and Rubus
chamaemorus. It differs from Upland Moist
Sedge—Dryas Meadow by the abundance of Salix
planifolia pulchra.

19

Results

Table 7. Vegetation cover and frequency for
Upland Moist Low Willow Shrub (n=2).

Cover Freq

Mean  SD (%)

Total Live Cover 132.0 61.5 100
Total Vascular Cover 110.8 713 100
Total Evergreen Shrub Cover 19.0 1.4 100
Cassiope tetragona 2.0 1.4 100
Dryas integrifolia 7.5 10.6 50
Dryas octopetala 7.5 10.6 50
Empetrum nigrum 1.0 1.4 50
Rhododendron lapponicum 1.0 1.4 50
Total Deciduous Shrub Cover 62.5 46.0 100
Arctostaphylos rubra 1.0 1.4 50
Betula nana 2.5 3.5 50
Salix arctica 2.5 3.5 50
Salix glauca 12.5 17.7 50
Salix lanata richardsonii 10.0 14.1 50
Salix planifolia pulchra 17.5 10.6 100
Salix reticulata 15.0 21.2 50
Vaccinium uliginosum 1.5 2.1 50
Total Forb Cover 259 284 100
Aconitum delphinifolium 0.6 0.6 100
Anemone richardsonii 0.5 0.7 50
Artemisia arctica arctica 0.6 0.6 100
Aster sibiricus 0.5 0.7 50
Castilleja caudata 0.5 0.7 50
Epilobium angustifolium 1.5 2.1 50
Equisetum arvense 10.0 14.1 50
Equisetum scirpoides 0.1 0.1 50
Galium sp. 0.5 0.7 50
Hedysarum alpinum 0.5 0.7 50
Mertensia paniculata 3.5 4.9 50
Pedicularis capitata 0.6 0.6 100
Potentilla fruticosa 1.5 2.1 50
Valeriana capitata 1.0 0.0 100
Zygadenus elegans 1.5 2.1 50
Total Grass Cover 1.5 1.2 100
Arctagrostis latifolia 0.3 0.4 50
Festuca altaica 0.6 0.6 100
Total Sedge Cover 2.0 2.8 50
Carex bigelowii 1.5 2.1 50
Carex podocarpa 0.5 0.7 50
Total NonVascular Cover 21.2 9.8 100
Total Moss Cover 10.7 3.7 100
Distichium capillaceum 1.5 2.1 50
Hylocomium splendens 5.0 0.0 100
Pleurozium schreberi 1.5 2.1 50
Tomentypnum nitens 2.5 3.5 50
Total Lichen Cover 10.6 13.5 100
Cetraria islandica cf 5.0 7.1 50
Cladina arbuscula 1.5 2.1 50
Cladina rangiferina 0.5 0.7 50
Cladina stygia 2.5 3.5 50
Thamnolia vermicularis 0.5 0.7 50
Total Bare Ground 38.5 16.3 100
Soil 0.5 0.7 50
Water 0.5 0.7 50
Litter alone 37.5 17.7 100
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Results

UPLAND MOIST DWARF BIRCH-

Table 8. Vegetation cover and frequency for Upland

ERICACEOUS SHRUB Moist Dwarf Birch-Ericaceous Shrub (n=8).
Cover Freq
Mean  SD (%)
Total Live Cover 136.3  56.7 100
Total Vascular Cover 744 40.8 100
Total Evergreen Shrub Cover 279 242 100
Empetrum nigrum 4.1 5.2 78
Ledum decumbens 142 171 100
Loiseleuria procumbens 2.1 4.0 33
Vaccinium vitis-idaea 7.3 6.4 100
Total Deciduous Shrub Cover 30.6  20.6 100
Arctostaphylos alpina 1.3 2.7 22
Betula nana 15.7 18.7 100
Salix arctica 1.7 3.5 22
Salix planifolia pulchra 3.8 6.3 78
Vaccinium uliginosum 7.6 6.8 89
Total Forb Cover 6.1 8.6 67
L. Petasites frigidus 30 52 44
Plant Association: Rubus chamaemorus 22 3.0 56
Betula nana—Ledum decumbens—Loiseleuria Saxifraga punctata 02 04 44
b Total Grass Cover 0.9 1.7 67
procumbens Total Sedge Cover 89 104 78
Carex aquatilis 1.1 33 11
Upper and middle slopes on rocky colluvial Carex bigelowii 33 36 78
material and fine-grained eolian or old alluvial Eriophorum angustifolium 1.9 50 22
. . . . . Eriophorum vaginatum 1.6 2.7 33
marine coastal plam‘ deposits Wlth vegetation Total NonVascular Cover 618 246 100
dominated by dwarf birch and ericaceous shrubs. Total Moss Cover 28.1 239 89
This ecotype is abundant in both parks and usually Aulacomnium palustre 13 1.8 44
occurs at moderate elevations. The soils typically Aulacomnium turgidum 0.6 09 33
Dicranum groenlandicum 1.7 5.0 11
are.rocky to loamy, moderately well to pqorly Dicranum sp. 14 22 33
drained, acidic to circumneutral, and have thin to Hylocomium splendens 74 87 56
moderately thick surface organic layers and a thin Pleurozium schreberi 06 L7 22
active layer. Permafrost is always present. Polytrichum sp. 1218 44
. R X Polytrichum strictum 0.4 1.0 22
Vegetation is dominated by Betula nana, Sphagnum lenense 33100 ”
Ledum decumbens, Vaccinium uliginosum, and Sphagnum sp. 6.8 182 33
Vaccinium  vitis-idaea. Frequently — occurring gotal LiChleﬂ Sove; 3-;’-3 2?-2 122

P . T etraria islandica c . .
spemes include Sa.lzx planifolia pulchra, Empetrum Clading arbuscula 20 3s 44
nigrum, Hylocomium splendens, Sphagnum spp., Cladina mitis 14 34 22
Cladina rangiferina, and C. stygia. Cladina rangiferina 51 65 67
This class is similar to many other ecotypes Cladina stellaris 61 183 11
because of the prominence of ericaceous species Cladina stygia 6.1 69 67
: C promir : pecl Cladonia sp. 09 17 56
typical of acidic habitats. It differs from Moist Dactylina arctica 02 04 22
Dwarf Shrub-Tussock Shrub by lacking abundant Flavocetraria cucullata 50 44 78
Eriophorum vaginatum cover. It differs from 1; l‘;‘{oce” ar iZ Zivalis 8-2 (l)z ‘3“3‘
. . . eltigera apnthosa . .

Upland DW Lichen Barrens by 1ack¥ng high cover Pertusaria sp. 04 07 3
of Cladina stellaris, Ochrolechia spp., and Sphaerophorus globosus 03 05 33
Umbilicaria  spp. It differs from Alpine Thamnolia vermicularis 14 13 89
Nonalkaline Dry Dryas Shrub by lacking Dryas ~ Total Bare Ground 372 227 100
octopetala. Lowland Moist Dwarf-Birch—Willow Soil 59 129 78
peraia. : art- Water 08 16 33
Shrub has much more Salix planifolia pulchra and Litter alone 306 240 100

lacks Ledum decumbens.
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Results

UPLAND MOIST DWARF

Table 9. Vegetation cover and frequency for Upland
BIRCH-TUSSOCK SHRUB Moist Dwarf Birch-Tussock Shrub (n=8).
Cover Freq
Mean  SD (%)
Total Live Cover 1422 234 100

Total Vascular Cover 714 17.6 100
Total Evergreen Shrub Cover 245 131 88

Empetrum nigrum 5.8 35 88
Ledum decumbens 11.9 7.0 88
Vaccinium vitis-idaea 6.8 4.4 88
Total Deciduous Shrub Cover 183 142 100
Arctostaphylos rubra 0.5 1.1 25
Betula nana 9.1 6.1 100
Salix glauca 0.3 0.7 13
Salix lanata richardsonii 0.6 1.8 13
Salix planifolia pulchra 2.9 5.0 100
Salix reticulata 0.3 0.7 25
Vaccinium uliginosum 4.6 3.7 100
Total Forb Cover 8.3 9.2 100
Petasites frigidus 1.8 3.5 50
Plant Association: Rubus chamaemorus 5.6 3.9 88
. . Total Grass Cover 0.5 1.4 13
Betula nana—Eriophorum vaginatum Arctagrostis latifolia 05 14 13
Total Sedge Cover 19.8 4.0 100
Moderate to gentle slopes at moderate and Carex bigelowii 45 3.1 100
lower elevations on loess, colluvium, and raised Eriophorum angustifolium LI 17 50
X . K . K Eriophorum vaginatum 14.0 33 100
areas of drained basins with vegetation dominated Total NonVascular Cover 708 93 100
by tussock-forming sedges. Soils are loamy Total Moss Cover 504 207 100
moderately well to poorly drained, acidic, and have Aulacomnium palustre 34 35 63
. . Aulacomnium turgidum 4.4 4.2 63

moderately thick surface organics and shallow Di
. X icranum elongatum 2.5 53 25
active layers (<40 cm). Permafrost is always Dicranum groenlandicum 13 35 13
present and probably ice-rich. This ecotype is the Dicranum sp. .1 19 38
most abundant ecotype in both parks and is prone Hylocomium splendens 88 138 50
to fire Pleurozium schreberi 1.3 3.5 13
: . . . . Polytrichum sp. 0.4 0.7 25
Vegetation is dominated by Eriophorum Sphagnum balticum 94 112 50
vaginatum, Betula nana, Ledum decumbens, and Sphagnum capillifolium 3.1 838 13
Empetrum nigrum. Other common species include Sphagnum fuscum 44 82 25
Rubus chamaemorus, Carex bigelowii, Salix gp Zagnum flrgenmhml 0.6 18 13
o o o phagnum lenense 1.3 3.5 13
planifolia  pulchra,  Vaccinium  uliginosum, Sphagnum sp. 6.6 13.8 38
Flavocetraria cucullata, and Cladina rangiferina. Tomentypnum nitens 14 35 25
Sphagnum mosses are abundant and diverse. g“tal ]flch;*“ g“"erf 28-3 18.0 gg
This‘ecotyp‘e is very similar to Upland Mo?st Cf;:i?;f;ibﬁczzc 30 5; 50
Dwarf Birch—Ericaceous Shrub, Lowland Moist Cladina mitis 25 52 38
Dwarf Birch—Willow Shrub and Lowland Wet Cladina rangiferina 48 45 75
Dwarf Birch—Ericaceous Shrub but differs by the Cladina stygia 1.7 35 38
o . Cladonia sp. 0.3 0.5 38
prevalence  (>12%  cover) of  Eriop horwjn Flavocetraria cucullata 28 36 63
vaginatum and the lack of Carex aquatilis. This Nephroma arcticum 06 12 25
tussock class, at least the acidic type described Peltigera aphthosa L3 17 63
here, is unusual in that species composition is very Thamnolia vermicularis 14 17 63
.. . Total Bare Ground 36.7 18.4 100
similar among plots within the type. Soil 04 05 50
Water 0.0 0.0 13
Litter alone 363 18.7 100

21

BELA-CAKR Landcover Mapping



Results

UPLAND DRY CROWBERRY SHRUB

Table 10. Vegetation cover and frequency for

Upland Dry Crowberry Shrub (n=5).

Cover Freq
Mean SD (%)
Total Live Cover 92.4 23.0 100
Total Vascular Cover 54.8 9.9 100
Total Evergreen Shrub Cover 34.8 8.1 100
assiope tetragona . .
C 0.4 09 40
Empetrum nigrum 31.0 11.4 100
Ledum decumbens 0.8 1.3 40
Loiseleuria procumbens 0.2 0.4 20
Vaccinium vitis-idaea 24 43 60
Total Deciduous Shrub Cover 10.9 9.6 80
Arctostaphylos alpina 1.0 22 40
Arctostaphylos rubra 3.0 6.7 20
Betula nana 2.6 42 60
Salix alaxensis 0.4 0.9 20
Salix glauca 0.6 1.3 40
Salix lanata richardsonii 0.2 0.4 20
Salix ovalifolia 0.6 1.3 20
Salix planifolia pulchra 0.2 0.4 60
Salix reticulata 0.6 0.9 60
Plant Association: Vaccinium uliginosum 1.6 2.1 60
Total Forb Cover 6.0 4.8 100
Empetrum nigrum—Elymus arenarius mollis Armeria maritima 03 04 100
Epilobium latifolium 1.6 3.6 20
. . . Lathyrus maritimus 1.2 1.1 60
Exposed ridges and upper slopes of inactive Oxytropis maydelliana 04 0.5 60
dunes and gravel beaches along the coast with g "";’””"Z”’fl";‘? ; (1)~2 3'3 gg
. . . axifraga broncnialls K .
vegetation dominated by Crowberry. Soils are Total Grass Cover 2.8 L1 100
sandy to gravelly, excessively to well-drained, and Elymus arenarius mollis 2.0 14 100
. . . Trisetum spicatum 0.2 0.4 60
circumneutral, and have very thin organics and Total Sedge Cover 03 04 20
deep thaw depths. This ecotype is limited to coastal Luzula multiflora 02 04 40
areas, and while the soils are nonsaline, some ig::: 11:14‘:)';:'25;::;“ Cover 3;‘2 2(7)'(5) igg
halophytic species persist. In BELA the beach Bryum sp. 18 20 60
ridges are sandy, whereas, in CAKR the beach g{cmnum acutifolium §~8 jg 58
. . icranum Sp. B .
ridges arg gravelly. Bare, wind-scoured patches are Hylocomium splendens 0.4 09 20
common in BELA. Pleurozium schreberi 0.2 0.4 40
: . . Ptilidium ciliare 0.4 0.9 40
Vegetation is dominated by FEmpetrum Ritidium rugosum 14 51 c0
nigrum, Arctostaphylos rubra, Betula nana, Sanionia uncinata 02 04 20
Flavocetraria cucullata, and Cladina arbuscula. :;’tatl Lichen Cover 2?; 1;; 128
. . . . ecloria nigricans . .
Halophytic species that have persisted from earlier B,yocaulo,,gdivergm 12 25 20
successional stages include Elymus arenarius Bryoria nitidula 1.0 2240
mollis, Lathyrus maritimus, Armeria maritima, and Cetraria islandica ct 06 09 40
. o . X Cetraria laevigata 0.8 1.3 40
Salix ovalifolia. Other common species include Cladina arbuscula 3.0 41 60
Epilobium  latifolium,  Rhytidium  rugosum, g"j’”‘f T ‘;gg’fer ma é'é ‘1‘~‘3‘ ‘2‘8
. . . . . . adonia sp. . .
Flavocetraria nivalis, Thamnolia vermicularis, and Flavocetraria cucullata 6.4 6.1 80
Stereocaulon sp. Flavocetraria nivalis 2.8 4.1 60
. . . Lobaria linit 0.1 0.1 60
This ecotype differs from Upland Moist o C;l':.;j,rigi ” 04 09 40
Dwarf Birch—Ericaceous Shrub and Lowland Pertusaria sp. 3.0 6.7 20
Moist Dwarf Birch—Willow Shrub by the Sphaerophorus fragilis 0.4 0.9 20
R i Sphaerophorus globosus 0.8 13 60
dominance of Empetrum nigrum, the presence of Stereocaulon sp. 2.0 45 40
Elymus arenarius mollis, and its occurrence in Thamnolia vermicularis 14 21 60
1 Total Bare Ground 29.4 24.1 100
coastal areas. Soil 4.4 34 100
Litter alone 25.0 25.7 100
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UPLAND MOIST SEDGE-DRYAS
MEADOW

Plant Association:

Dryas integrifolia—Carex bigelowii—Senecio
atropurpureus

Moderate to gentle, middle to upper slopes at
moderate elevations on colluvium and glacial till
with vegetation co-dominated by sedges and dwarf
shrubs. Soils are loamy, somewhat poorly drained,
circumneutral to alkaline, and have moderately
thick surface organics and moderately deep
(40-80 cm) thaw depths. The water table typically
is 15-30 cm below the soil surface. This ecotype is
abundant in both parks and commonly occurs on
slopes below carbonate bedrock.

Dominant plants include Dryas integrifolia,
Salix arctica, Salix reticulata, Carex bigelowii, and
Tomentypnum nitens. Other common species
include Salix lanata richardsonii, Arctostaphylos
rubra, Equisetum arvense, Hylocomium splendens,
and Flavocetraria cucullata.

This ecotype is very similar to Lowland Moist
Sedge—Dryas Meadow but lacks Betula nana, and
has lower cover of Equisetum arvense. During
mapping, this ecotype was restricted to upland and
mountainous areas, whereas, Lowland Moist
Sedge-Dryas Meadows was restricted to the
coastal plains and drainages.
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Results

Table 11. Vegetation cover and frequency for Upland
Moist Sedge—Dryas Meadow (n=10).
Cover Freq
Mean SD (%)
Total Live Cover 147.5 25.6 100
Total Vascular Cover 81.6 15.6 100
Total Evergreen Shrub Cover 30.9 19.0 100
Cassiope tetragona 1.2 1.7 50
Dryas integrifolia 27.0 19.3 80
Rhododendron lapponicum 1.8 2.4 50
Total Deciduous Shrub Cover 22.1 7.5 100
Andromeda polifolia 0.6 1.6 30
Arctostaphylos rubra 39 2.8 90
Salix arctica 5.2 3.5 90
Salix lanata richardsonii 2.6 33 80
Salix planifolia pulchra 0.3 0.9 40
Salix reticulata 6.0 6.2 60
Vaccinium uliginosum 1.9 3.1 60
Total Forb Cover 12.2 4.8 100
Astragalus umbellatus 0.3 0.5 50
Equisetum arvense 3.8 4.4 60
Equisetum scirpoides 0.2 0.6 30
Equisetum variegatum 0.3 0.7 30
Hedysarum alpinum 0.2 0.4 50
Lagotis glauca 0.1 0.3 50
Pedicularis langsdorffii arctica 0.2 0.4 20
Petasites frigidus 0.8 1.3 30
Pinguicula vulgaris 0.2 0.3 60
Polygonum viviparum 0.2 0.4 60
Potentilla biflora 0.3 0.5 30
Potentilla fruticosa 0.4 0.7 30
Saussurea angustifolia 0.3 0.5 70
Saxifraga hirculus 0.3 0.5 70
Saxifraga oppositifolia 1.4 32 40
Senecio atropurpureus 0.2 04 60
Silene acaulis 0.1 0.3 40
Total Grass Cover 1.5 1.7 80
Arctagrostis latifolia 0.6 1.0 40
Festuca altaica 0.5 1.1 20
Poa arctica SL 0.2 0.4 40
Total Sedge Cover 15.0 52 100
Carex atrofusca 1.1 1.7 40
Carex bigelowii 5.1 7.1 60
Carex membranacea 1.2 2.0 40
Carex misandra 0.6 1.1 40
Carex rotundata 0.9 1.7 40
Carex scirpoidea 1.8 2.6 60
Eriophorum angustifolium 0.7 1.1 40
Eriophorum vaginatum 0.2 04 40
Total NonVascular Cover 65.9 21.9 100
Total Moss Cover 52.9 27.3 100
Aulacomnium acuminatum 35 6.7 30
Aulacomnium palustre 0.9 1.4 30
Hylocomium splendens 15.5 21.4 70
Hypnum bambergeri 2.0 35 30
Ptilidium ciliare 2.0 2.3 50
Rhytidium rugosum 44 5.1 70
Tomentypnum nitens 17.3 19.3 80
Total Lichen Cover 13.0 7.8 100
Asahinea chrysantha 0.8 1.5 40
Cetraria islandica cf 0.3 0.5 30
Flavocetraria cucullata 3.8 2.5 100
Flavocetraria nivalis 0.9 0.9 60
Pertusaria sp. 1.5 2.2 50
Thamnolia vermicularis 2.0 2.2 70
Total Bare Ground 38.5 22.1 100
Soil 2.3 2.9 80
Water 0.7 1.0 60
Litter alone 35.5 20.2 100
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Results

LOWLAND MOIST TALL
ALDER-WILLOW SHRUB

Plant Association:
Alnus crispa—Salix planifolia pulchra—Rubus
arcticus

Lower slopes and drainages on hillside
colluvium with vegetation dominated by tall
(>1.5m) shrubs. Soils typically are loamy,
moderately well to somewhat poorly drained, and
circumneutral. Thaw depths are generally >50 cm
and soil organic horizons are thin.

Vegetation is dominated by an open or closed
canopy of Salix planifolia pulchra and/or Alnus
crispa. Areas dominated by Alnus crispa have
Salix planifolia pulchra as a co-dominant or in the
understory. Other understory species include Rubus
arcticus, Equisetum arvense, Artemisia tilesii,
Mertensia paniculata, Galium boreale,
Arctagrostis  latifolia, and  Calamagrostis
canadensis. Due to heavy litterfall mosses have
low cover.

This ecotype differs from Riverine Moist Tall
Alder—Willow Shrub by lacking Salix alaxensis,
S. barclayi, and S. arbusculoides. 1t differs from
Lowland Moist Low Willow Shrub by lacking
Salix  lanata  richardsonii, S. vreticulata,
Tomentypnum nitens, and Hylocomium splendens.

BELA-CAKR Landcover Mapping

Table 12. Vegetation cover and frequency for Low-
land Moist Tall Alder—Willow Shrub (n=5).

Cover Freq

Mean SD (%)

Total Live Cover 116.3 23.0 100
Total Vascular Cover 1122 241 100
Total Evergreen Shrub Cover 0.8 1.3 40
Dryas octopetala 0.4 0.9 20
Juniperus communis 0.2 0.4 20
Linnaea borealis 0.2 0.4 20
Total Deciduous Shrub Cover 72.8 199 100
Alnus crispa 57.0  21.7 100
Salix lanata richardsonii 1.0 2.2 20
Salix planifolia pulchra 13.0 14.4 80
Salix reticulata 0.6 1.3 20
Spiraea beauverdiana 0.6 1.3 40
Vaccinium uliginosum 0.2 0.4 40
Total Forb Cover 25.7 19.8 100
Aconitum delphinifolium 0.4 0.5 80
Angelica lucida 1.0 1.2 60
Artemisia arctica arctica 0.4 0.5 40
Artemisia tilesii 2.2 2.6 60
Epilobium angustifolium 1.0 2.2 20
Equisetum arvense 7.0 5.7 100
Galium boreale 2.6 4.3 40
Iris setosa 0.6 1.3 20
Lycopodium annotinum 1.2 1.6 40
Mertensia paniculata 2.4 4.3 40
Petasites frigidus 1.2 1.3 60
Potentilla fruticosa 1.0 2.2 20
Rubus arcticus 1.6 2.1 80
Valeriana capitata 1.0 1.2 80
Total Grass Cover 11.8 142 100
Arctagrostis latifolia 6.0 13.4 20
Calamagrostis canadensis 5.2 8.3 80
Total Sedge Cover 1.1 2.2 80
Carex atrofusca 1.0 2.2 20
Total NonVascular Cover 4.1 2.8 80
Total Moss Cover 3.7 23 80
Brachythecium reflexum 0.6 0.9 40
Brachythecium sp. 1.2 2.2 40
Climacium dendroides 0.2 0.4 20
Hylocomium splendens 0.2 0.4 20
Plagiomnium ellipticum 0.2 0.3 40
Sanionia uncinata 0.2 0.4 40
Total Lichen Cover 0.4 0.7 60
Total Bare Ground 78.0 19.6 100
Soil 2.0 4.5 20
Water 0.0 0.0 0
Litter alone 76.0 238 100




LOWLAND MOIST LOW WILLOW
SHRUB

Plant Association: Salix planifolia pulchra—

Calamagrostis canadensis

Low-lying flats and lower slopes within
drained-lake basins, on abandoned floodplains, and
on colluvium with vegetation dominated by low
willows (0.2—1.5 m tall). Soils typically are loamy,
saturated,  poorly  drained, alkaline to
circumneutral, and underlain by permafrost at
moderate depths. Surface organics are thin on
slopes and moderately thick on flats.

Vegetation is an open to closed low shrub
canopy dominated by Salix planifolia pulchra.
Other common species include Salix lanata
richardsonii, Betula nana, Salix reticulata, Festuca
altaica, Calamagrostis canadensis, Equisetum
arvense, Polemonium acutiflorum, Eriophorum
angustifolium, Valeriana capitata, Tomentypnum
nitens, and Hylocomium splendens.

This ecotype differs from closely related
Upland Moist Low Willow Shrub by lacking Salix
glauca and Cassiope tetragona and having
Calamagrostis ~ canadensis. ~ While  species
composition is similar, the fine-grained soil
associated with ice-rich permafrost is considerably
different from the rocky soil with presumably
ice-poor permafrost on upland hillsides.
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Table 13. Vegetation cover and frequency for

Lowland Moist Low Willow Shrub (n=10).

_ Cover  Freq

Mean SD (%)

Total Live Cover 213.8 48.2 100
Total Vascular Cover 162.7 30.8 100
Total Evergreen Shrub Cover 2.9 6.4 50
Dryas integrifolia 2.0 6.3 10
Empetrum nigrum 0.3 0.5 40
Total Deciduous Shrub Cover 81.5 15.0 100
Arctostaphylos rubra 2.5 6.3 20
Betula nana 0.8 1.0 50
Salix hastata 7.5 23.7 10
Salix lanata richardsonii 13.5 20.0 50
Salix planifolia pulchra 38.0 34.6 70
Salix reticulata 16.8 22.1 70
Spiraea beauverdiana 0.3 0.5 30
Vaccinium uliginosum 1.3 1.8 60
Total Forb Cover 63.8 24.7 100
Aconitum delphinifolium 0.7 0.8 60
Anemone parviflora 1.2 3.1 30
Anemone richardsonii 0.8 1.0 50
Artemisia arctica arctica 2.3 34 50
Cardamine pratensis 0.2 0.6 40
Dodecatheon frigidum 0.7 0.8 60
Equisetum arvense 26.4 319 90
Myosotis alpestris asiatica 0.7 1.3 30
Petasites frigidus 15.4 25.7 70
Polemonium acutiflorum 3.7 9.3 100
Polygonum bistorta 0.5 1.0 30
Potentilla fruticosa 0.9 1.7 30
Rubus arcticus 1.3 3.1 50
Rubus chamaemorus 1.1 3.1 20
Saxifraga punctata 0.2 04 40
Senecio lugens 0.3 0.7 30
Stellaria sp. 0.1 0.1 40
Valeriana capitata 3.5 2.8 100
Total Grass Cover 9.7 10.6 100
Arctagrostis latifolia 0.2 0.6 20
Calamagrostis canadensis 33 5.1 50
Festuca altaica 5.1 10.7 60
Poa arctica SL 0.6 1.3 40
Trisetum spicatum 0.1 0.3 40
Total Sedge Cover 4.8 6.3 90
Carex aquatilis 1.9 3.6 40
Carex bigelowii 0.6 1.6 30
Carex scirpoidea 0.2 0.4 20
Eriophorum angustifolium 14 2.8 30
Total NonVascular Cover 51.1 25.6 100
Total Moss Cover 49.3 25.3 100
Aulacomnium palustre 53 8.0 60
Brachythecium coruscum 1.0 32 10
Brachythecium salebrosum 1.5 4.7 10
Brachythecium sp. 0.6 1.3 20
Bryum pseudotriquetrum 1.0 32 10
Calliergon stramineum 4.0 12.6 10
Campylium stellatum 1.0 32 10
Dicranum sp. 1.6 3.1 40
Hylocomium splendens 15.7 22.6 70
Plagiomnium ellipticum 1.5 4.7 20
Pleurozium schreberi 0.6 1.6 20
Tomentypnum nitens 6.8 12.3 70
Unknown moss 3.6 9.4 30
Total Lichen Cover 1.8 34 80
Peltigera aphthosa 04 0.7 60
Total Bare Ground 41.8 21.0 100
Soil 0.3 0.5 30
Water 0.5 0.7 40
Litter alone 41.0 21.2 100
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LOWLAND MOIST DWARF
BIRCH-WILLOW SHRUB

Plant Association:

Betula nana—Salix planifolia pulchra—Pyrola
grandiflora

Lower slopes and flats on low-lying
alluvial-marine deposits and drained basins with
vegetation dominated by shrub birch. Soils are
loamy to organic, poorly drained, acidic, and have
moderately thick surface organics and shallow
(<40 cm) active-layer. Water depths typically are
<20 cm below the soil surface.

Vegetation has an open to closed canopy of
Betula nana, Salix planifolia pulchra is present and
may be co-dominant. Other species include the
shrubs Ledum decumbens, Vaccinium vitis-idaea,
V. uliginosum, Empetrum nigrum, and the mosses
Aulacomnium  turgidum, A. palustre, and
Hylocomium splendens.

This ecotype differs from the closely related
Upland Moist Low Dwarf Birch—Ericaceous Shrub
by having Carex aquatilis, Eriophorum
angustifolium, and more Salix planifolia pulchra. It
differs from Riverine Moist Dwarf Birch—Willow
Shrub and Lowland Moist Low Willow Shrub by
lacking Salix glauca and having Ledum
decumbens, and Empetrum nigrum.
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Table 14. Vegetation cover and frequency for
Lowland Moist Dwarf Birch—Willow Shrub
(n=8).

Cover Freq

Mean SD (%)

Total Live Cover 155.6 49.3 100
Total Vascular Cover 99.1 29.0 100
Total Evergreen Shrub Cover 10.5 11.8 88
Empetrum nigrum 1.8 34 63
Ledum decumbens 4.5 4.8 75
Vaccinium vitis-idaea 43 5.5 63
Total Deciduous Shrub Cover 67.5 25.3 100
Alnus crispa 0.6 1.8 25
Arctostaphylos rubra 0.1 0.4 13
Betula nana 24.1 16.0 100
Salix barclayi 0.6 1.8 13
Salix chamissonis 0.3 0.7 13
Salix planifolia pulchra 28.4 14.3 100
Spiraea beauverdiana 0.9 1.7 38
Vaccinium uliginosum 12.5 17.4 100
Total Forb Cover 7.6 5.5 100
Equisetum arvense 0.4 0.7 25
Petasites frigidus 4.3 4.4 75
Pyrola grandiflora 1.0 13 50
Rubus chamaemorus 1.3 2.4 50
Total Grass Cover 1.8 1.5 75
Arctagrostis latifolia 0.6 1.2 38
Calamagrostis canadensis 0.6 1.2 25
Poa arctica SL 0.3 0.4 50
Total Sedge Cover 11.7 20.0 88
Carex aquatilis 5.4 14.0 25
Carex bigelowii 1.4 2.0 38
Carex podocarpa 0.6 1.8 13
Eriophorum angustifolium 39 7.4 38
Eriophorum vaginatum 0.4 1.1 38
Total NonVascular Cover 56.5 31.6 100
Total Moss Cover 53.1 29.2 100
Aulacomnium acuminatum 0.6 1.8 25
Aulacomnium palustre 8.1 13.9 63
Aulacomnium turgidum 2.0 3.7 38
Dicranum sp. 2.9 4.5 50
Drepanocladus sp. 0.1 0.4 13
Hylocomium splendens 14.4 254 63
Hypnum plicatulum 2.5 7.1 13
Polytrichum juniperinum 1.9 3.7 25
Sanionia uncinata 0.6 1.2 25
Sphagnum fuscum 0.6 1.8 13
Sphagnum sp. 8.5 17.5 50
Sphagnum squarrosum 5.0 14.1 13
Tomentypnum nitens 3.8 10.6 13
Total Lichen Cover 3.3 5.5 88
Cetraria laevigata 0.3 0.7 13
Cladina arbuscula 0.4 1.1 13
Cladina stygia 0.4 1.1 25
Cladonia furcata 0.6 1.8 13
Cladonia sp. 0.3 0.7 38
Peltigera aphthosa 0.4 0.5 63
Stereocaulon tomentosum 0.1 0.4 13
Total Bare Ground 41.7 27.8 100
Soil 1.4 3.5 38
Water 0.9 1.8 38
Litter alone 394 27.3 100




Results

LOWLAND WET DWARF Table 15. Vegetation cover and frequency for

BIRCH-ERICACEOUS SHRUB Lowland Wet Dwarf Birch—Ericaceous
Shrub (n=10).
Cover Freq
Mean SD (%)
Total Live Cover 169.1 528 100
Total Vascular Cover 94.8 35.6 100
Total Evergreen Shrub Cover 36.3 27.6 100
Chamaedaphne calyculata 1.0 32 10
Empetrum nigrum 9.8 12.1 100
Ledum decumbens 14.5 16.7 100
Oxycoccus microcarpus 0.2 0.4 20
Vaccinium vitis-idaea 10.8 12.0 90
Total Deciduous Shrub Cover 36.4 21.2 100
Andromeda polifolia 24 6.2 30
Betula nana 21.8 18.4 100
Salix fuscescens 0.5 1.6 30
Salix planifolia pulchra 2.1 4.6 70
Vaccinium uliginosum 8.8 7.9 80
Total Forb Cover 2.2 2.5 70
Pedicularis sudetica 0.1 0.3 30
Rubus chamaemorus 1.8 2.4 40
Total Grass Cover 0.2 0.4 20
ot o Total Sedge Cover 19.6 23.7 100
Plant Association: Carex aquatilis 14.9 19.7 90
Betula nana—Vaccinium vitis-idaea—Carex Carex bigelowii 0.2 0.4 30
-7 Carex rariflora 1.0 2.1 20
aquatllls Eriophorum angustifolium 24 6.3 40
Eriophorum russeolum 0.6 1.6 20
Flat areas on drained-lake basins, abandoned Total NonVascular Cover 74.3 30.6 100
. . . . Total Moss Cover 66.1 288 100
floodplain, and coastal plain deposits dominated by Aulacomnium palusire 6.4 71 70
dwarf shrubs (<0.2 m tall) and mosses. Soils are zéuétllcomnium turgidum (5)-0 ?-é Zg
. . : s 1 alliergon stramineum 5 .

organic-rich, poorly drained, acidic, and. have Dicranum acutifolium 0.5 L6 10
shallow thaw depths. Ground water usually is less Dicranum elongatum 4.0 80 40
than 20 cm below the soil surface. Permafrost is Dicranum groenlandicum 0.8 1820
Dicranum laevidens 0.5 1.6 20
always present and low-centered polygons occur Dicranum majus 07 L6 20
on some sites in this class. Dicranum sp. 1.0 1.8 30
: . . : Hepaticae 0.5 1.6 20
Vegetation is dominated by the shrub species Hylocomium splendens 55 93 p
Vaccinium uliginosum, V. vitis-idaea, Ledum Limprichtia revolvens 03 0.7 30
decumbens, Empetrum nigrum, and Betula nana. Polytrichum juniperinum 1.5 3.4 30
. . . Ptilidium ciliare 0.4 1.0 30
Other common species include Carex aquatilis, Scorpidium scorpioides 05 16 10
Aulacomnium turgidum, and numerous species Sphagnum angustifolium 1.0 32 10
of Sphagnum including S. balticum, S. fuscum, Sphagnum balticum 12.5 284 30
. . Sphagnum fuscum 2.5 6.3 20
S. warnstorfii, and S. perfoliatum. Sphagnum girgensohnii 1.5 4.7 10
This ecotype is similar to Lowland Moist Sphagnum perfoliatum 1.0 32 10
Dwarf Birch-Willow Shrub but has much more gizzgzzz :;_be””m ;:8 % ég
C. aquatilis and Sphagnum spp. and much less Sphagnum squarrosum 55 157 30
Salix planifolia pulchra. It differs from Lowland Sphagnum warnstorfii 21 £ 30
. . Tomentypnum nitens 1.7 4.7 30
Sedge—Moss Fen by having a high shrub cover and Total Lichen Cover 82 103 90
the presence of Hylocomium splendens. Cetraria islandica cf 0.3 0.7 20
Cladina arbuscula 2.2 4.6 50
Cladina rangiferina 1.1 1.9 40
Cladina stygia 1.1 3.1 30
Flavocetraria cucullata 0.8 1.6 60
Thamnolia vermicularis 0.4 0.7 30
Total Bare Ground 29.2 19.6 100
Soil 0.1 0.3 10
Water 0.8 1.2 40
Litter alone 28.3 20.3 100
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LOWLAND MOIST SEDGE-DRYAS
MEADOW

Plant Association:

Dryas integrifolia—Equisetum arvense

Moderate to gentle, lower slopes at lower
elevations on colluvium, glacial till, and coastal
plain deposits with vegetation co-dominated by
sedges and dwarf shrubs. Soils are loamy,
somewhat poorly drained, circumneutral to
alkaline, and have moderately thick surface
organics and moderately deep (40-80 cm) thaw
depths. The water table typically is 15-30 cm
below the soil surface. This ecotype is abundant in
both parks.

Dominant plants include Dryas integrifolia,
Dryas octopetala, Salix reticulata, Salix arctica,
Equisetum arvense, and Hylocomium splendens.
Other common species include Salix lanata
richardsonii,  Arctostaphylos  rubra,  Carex
bigelowii, Tomentypnum nitens, and Flavocetraria
cucullata.

This ecotype is very similar to Upland Moist
Sedge-Dryas Meadow but has more Equisetum
arvense. During mapping, this ecotype was
restricted to the coastal plains and drainages,
whereas, Upland Moist Sedge—Dryas Meadow was
restricted to upland and mountainous areas. Of
particular interest in differentiating upland and
lowland types is the likelihood of ice-rich
permafrost in the loamy lowlands and ice-poor
permafrost in the rocky uplands.
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Table 16.

Vegetation cover and frequency for

Lowland Moist Sedge—Dryas Meadow

(n=3).
Cover Freq
Mean  SD (%)
Total Live Cover 146.5 8.2 100
Total Vascular Cover 839 102 100
Total Evergreen Shrub Cover 28.0 15.1 100
Cassiope tetragona 0.7 1.2 33
Dryas integrifolia 16.7  20.8 67
Dryas octopetala 100 173 33
Total Deciduous Shrub Cover 24.7 8.0 100
Arctostaphylos rubra 23 2.5 67
Betula nana 0.7 1.1 67
Salix arctica 33 1.5 100
Salix lanata richardsonii 2.0 2.6 67
Salix planifolia pulchra 0.7 0.6 67
Salix reticulata 13.3 7.6 100
Vaccinium uliginosum 1.7 2.9 33
Total Forb Cover 18.5 2.9 100
Artemisia arctica arctica 1.0 1.7 33
Dodecatheon frigidum 1.3 1.5 67
Equisetum arvense 9.3 8.0 100
Petasites frigidus 2.0 2.6 67
Polygonum bistorta 0.7 0.5 100
Polygonum viviparum 0.7 0.5 100
Saxifraga hirculus 0.1 0.1 67
Saxifraga punctata 0.1 0.1 67
Valeriana capitata 0.4 0.6 67
Total Grass Cover 43 5.9 67
Arctagrostis latifolia 1.3 1.5 67
Festuca altaica 1.0 1.7 33
Poa arctica SL 1.3 1.5 67
Trisetum spicatum 0.7 1.2 33
Total Sedge Cover 8.3 4.0 100
Carex bigelowii 4.7 2.5 100
Carex podocarpa 1.0 1.7 33
Carex scirpoidea 0.7 1.2 33
Luzula multiflora 0.7 0.6 67
Total NonVascular Cover 62.7 2.1 100
Total Moss Cover 57.0 2.0 100
Aulacomnium acuminatum 5.0 8.7 33
Aulacomnium palustre 33 5.8 33
Aulacomnium turgidum 0.7 1.2 33
Dicranum sp. 4.0 1.7 100
Drepanocladus sp. 1.7 2.9 33
Hylocomium splendens 20.0 10.0 100
Hypnum sp. 33 5.8 33
Rhytidium rugosum 33 5.8 33
Sanionia uncinata 1.0 1.7 33
Tomentypnum nitens 127 112 100
Unknown moss 1.7 2.9 33
Total Lichen Cover 5.7 0.6 100
Cetraria islandica cf 1.7 0.6 100
Cladonia sp. 0.7 0.6 67
Flavocetraria cucullata 1.3 1.2 67
Peltigera aphthosa 0.7 0.6 67
Total Bare Ground 441 29.5 100.0
Soil 0.4 0.6 66.7
Water 0.4 0.6 66.7
Litter alone 433 289 100.0




Results

LOWLAND SEDGE-MOSS FEN

Table 17. Vegetation cover and frequency for

MEADOW Lowland Sedge-Moss Fen Meadow (n=9).
Cover Freq
Mean SD (%)
Total Live Cover 113.6 33.0 100
Total Vascular Cover 454 18.6 100
Total Evergreen Shrub Cover 54 6.5 89
Empetrum nigrum 1.2 1.7 67
Ledum decumbens 2.8 34 89
Oxycoccus microcarpus 0.6 1.0 33
Vaccinium vitis-idaea 0.8 1.7 33
Total Deciduous Shrub Cover 8.8 6.3 100
Andromeda polifolia 0.7 1.1 33
Betula nana 2.8 3.1 100
Salix fuscescens 1.6 1.7 67
Salix planifolia pulchra 1.3 33 22
Vaccinium uliginosum 2.3 2.6 89
Total Forb Cover 2.2 4.5 78
Pedicularis sudetica 0.2 0.4 22
Petasites frigidus 0.3 1.0 22
Potentilla palustris 1.2 33 44
Rubus chamaemorus 0.3 0.7 22
Plant Association: Total Grass Cover 1.1 2.0 44
: Calamagrostis canadensis 0.7 1.7 33
Carex aquatilis—Salix fuscescens—Sphagnum Hierochloe pauciflora 0.4 07 33
Total Sedge Cover 279 17.1 100
. . X . . Carex aquatilis 16.3 17.6 100
Flat areas, primarily in drained-lake basins, Carex bigelowii 11 33 11
with vegetation dominated by sedges and garex chOJr;lorrhiza g-? ;471 ;

: : : arex rarijlora . B
Sphagnum mossgs. Soils ar‘e orga}n}c-rlch Caver rotimdata 0.1 03 22
(20—40 cm of organics), poorly drained, acidic, and Eriophorum angustifolium 47 5.7 56
have shallow active-layer depths. Water usually is Eriophorum russeolum 1.0 1.7 33
within 10 cm of the surface. This ecotype is Eriophorum scheuchzeri 1.3 22 33
. Eriophorum vaginatum 0.3 0.7 22
common on the coastal plains of both parks. Luzula arcuata 0.1 0.3 11
Vegetation is dominated by Carex aquatilis, Total NonVascular Cover 68.1 215 100
Salix fuscescens, and numerous Sphagnum spp. Total Moss Cover 67.3 210100
X K Aulacomnium palustre 39 7.0 44
Other common species include Betula nana, Campylium stellatum 0.6 1.7 11
Ledum decumbens, Eriophorum angustifolium, and Di?ranu}rln sp. (l)-i 3-3 ;;
. Polytrichum juniperinum . 7

Aulacon?mum p aluStre,' Sphagnum balticum 2.2 6.7 11
This ecotype differs from closely related Sphagnum capillifolium 4.4 13.3 11
Lowland Sedge Fen Meadow by the presence of Sphagnum compactum L7 50 11
Salix fuscescens, Sphagnum, and Betula nana. It ‘;pZZgZZZ{ZSEZ’Z’amm g'g 2(7)'3 gg
differs from Lowland Wet Dwarf Birch—Ericacous Sihagnum lenense 5.6 113 2
Shrub by the low cover of shrubs and by the lack of Sphagnum lindbergii 1.7 50 11
- Sphagnum obtusum 1.1 33 11
Hylocomium splendens. Sphagnim sp. i 19% 3
Sphagnum squarrosum 15.6 16.5 56
Sphagnum subsecundum 2.0 5.0 22
Sphagnum warnstorfii 2.8 6.7 22
Total Lichen Cover 0.8 1.6 44
Cladina arbuscula 0.4 1.3 11
Cladonia sp. 0.1 0.3 11
Total Bare Ground 47.4 22.0 100
Soil 0.1 0.3 22
Water 7.8 11.2 78
Litter alone 394 15.9 100
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LOWLAND SEDGE FEN MEADOW

e U P e

Plant Association:
Carex aquatilis—Carex chordorrhiza

Organic-rich sites on low-lying flats, on
coastal plain deposits, abandoned floodplains, and
within drained-lake basins with vegetation
dominated by sedges. Soils are saturated, very
poorly drained, have thick organic horizons, and
are acidic to circumneutral. Ground water is close
to the soil surface and active later depths are
moderate to shallow (<40 cm). Ice-wedge
development in older landscapes creates distinctive
low-centered polygons. The surface generally is
flooded during early summer (depth <30 c¢cm) and
drains later in the growing season.

Vegetation is dominated by Carex aquatilis,
Eriophorum angustifolium, and C. chordorrhiza.
Aquatic  mosses  Scorpidium  scorpioides,
Limprichtia revolvens, and Calliergon giganteum
often are present. Low and dwarf shrubs may be
present but cover is very low.

This ecotype is similar to Lowland
Sedge-Moss Fen but lacks Sphagnum, Salix
fuscescens, and ericaceous shrubs. It differs from
Lacustrine Marestail Marsh by lacking Hippurus
vulgaris. In this area, fen meadows quickly acidify
during lake-basin succession.
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Table 18. Vegetation cover and frequency for
Lowland Sedge Fen Meadow (n=11).

Cover Freq

Mean SD (%)

Total Live Cover 65.6 437 100
Total Vascular Cover 452 263 100
Total Deciduous Shrub Cover 1.1 1.2 73
Andromeda polifolia 02 04 18
Betula nana 0.2 0.4 27
Salix fuscescens 04 05 55
Salix planifolia pulchra 04 07 27
Salix sp. 0.0 0.0 9
Total Forb Cover 7.8 175 91
Caltha palustris 09 2.0 36
Cardamine pratensis 0.0 0.0 9
Galium trifidum 0.0 0.0 9
Hippuris vulgaris 0.0 0.0 9
Menyanthes trifoliata 0.1 0.3 9
Pedicularis parviflora pennellii 0.1 0.3 27
Pedicularis sudetica 0.3 0.6 36
Petasites frigidus 0.0 0.0 9
Polemonium acutiflorum 0.0 0.0 9
Potentilla palustris 4.8 150 36
Ranunculus pallasii 0.6 1.5 27
Rumex arcticus 0.1 0.3 9
Saxifraga hirculus 0.1 0.3 9
Utricularia sp. 0.0 0.0 9
Utricularia vulgaris 03 09 9
Utricularia vulgaris macrorhiza 04 08 18
Total Grass Cover 0.5 1.0 27
Calamagrostis canadensis 04 09 18
Dupontia fischeri 0.2 0.6 9
Total Sedge Cover 357 14.6 100
Carex aquatilis 152 128 100
Carex chordorrhiza 6.8 92 64
Carex membranacea 0.5 0.8 36
Carex rariflora 0.5 1.5 18
Carex rotundata 04 09 18
Carex saxatilis laxa 14 45 9
Eriophorum angustifolium 8.5 7.4 91
Eriophorum russeolum 1.7 1.7 64
Eriophorum scheuchzeri 0.5 1.5 9
Eriophorum vaginatum 0.0 0.0 9
Total NonVascular Cover 204 283 82
Total Moss Cover 204 283 82
Aulacomnium turgidum 0.5 1.5 18
Calliergon giganteum 19 6.0 18
Campylium stellatum 0.5 1.5 9
Cinclidium latifolium 0.5 1.5 9
Limprichtia revolvens 45 119 45
Mnium sp. 0.0 0.0 9
Rhizomnium sp. 0.5 1.5 9
Scorpidium scorpioides 114 219 36
Sphagnum sp. 0.5 1.5 9
Unknown liverwort 03 09 9
Total Bare Ground 90.1 424 100
Soil 1.8 6.0 9
Water 57.5 282 100
Litter alone 30.7  26.1 100




LOWLAND WATER

Shallow (<1.5 m) and deep (=1.5 m) lakes
primarily resulting from thawing of ice-rich
permafrost on the coastal plain and distal portions

of abandoned floodplains. These lakes lack
riverine influences. In shallow ponds, water freezes
to the bottom during winter, thaws by early to
mid-June, and is warmer than water in deep lakes.
In deep lakes, water does not freeze to the bottom
during winter in deeper portions of the lake.
Sediments are loamy to sandy. The alpine lakes in
the Bendeleben Mountains are included in this
class because they are relatively rare.

Table 19. Vegetation cover and frequency for

Lowland Water (n=4).

Cover Freq
Mean  SD (%)

Total Live Cover 1.5 3.0 25
Total Vascular Cover 1.3 2.5 25
Total Forb Cover 0.5 1.0 25
Hippuris vulgaris 0.3 0.5 25
Potentilla palustris 0.3 0.5 25
Total Grass Cover 0.3 0.5 25
Arctophila fulva 0.3 0.5 25
Total Sedge Cover 0.5 1.0 25
Carex aquatilis 0.3 0.5 25
Eriophorum angustifolium 0.3 0.5 25
Total Moss Cover 0.3 0.5 25
Calliergon giganteum 0.3 0.5 25
Total Bare Ground 100.0 0.0 100
Water 100.0 0.0 100

LACUSTRINE MARESTAIL MARSH

Plant Associations: Hippurus
vulgaris—Potamogeton spp.; Carex
aquatilis—Caltha palustris; Arctophila fulva
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Shallow water with emergent vegetation.
Although the plant associations are distinct they
were combined because they are uncommon and
sampling was inadequate. This class was included
in the Lowland Water class for mapping. Dominant
species include Hippuris vulgaris and Carex
aquatilis, while Caltha natans, Arctophila fulva,
and Potentilla palustris often occur in differing
circumstances.

Table 20. Vegetation cover and frequency for
Lacustrine Maresail Marsh (n=5).

Cover Freq

Mean SD (%)

Total Live Cover 343 235 100
Total Vascular Cover 30,5  19.0 100
Total Deciduous Shrub Cover 0.2 0.4 20
Salix fuscescens 0.2 0.4 20
Total Forb Cover 199 169 100
Caltha natans 3.0 6.7 20
Caltha palustris 0.8 1.3 40
Hippuris vulgaris 8.6 8.5 80
Menyanthes trifoliata 0.4 0.9 20
Myriophyllum spicatum 0.6 1.3 40
Potamogeton sp. 0.4 0.5 60
Potentilla palustris 5.0 8.7 40
Ranunculus hyperboreus 0.6 1.3 40
Ranunculus pallasii 0.4 0.9 20
Total Grass Cover 4.2 8.8 40
Arctophila fulva 4.2 8.8 40
Total Sedge Cover 6.2 133 40
Carex aquatilis 3.2 6.6 40
Eriophorum angustifolium 3.0 6.7 20
Total Moss Cover 3.8 6.9 40
Limprichtia revolvens 2.0 4.5 20
Scorpidium scorpioides 1.0 2.2 20
Sphagnum cf. jensnii 0.2 0.4 20
Sphagnum squarrosum 0.6 1.3 20
Total Bare Ground 105.0 27.1 100
Water 86.8 184 100
Litter alone 182  40.1 40
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LACUSTRINE MOIST BLUEJOINT
MEADOW

Plant Association:

Calamagrostis canadensis—Rumex arcticus

Flat areas in recently drained-lake basins
dominated by Bluejoint grass. Soils are loamy,
somewhat poorly drained, circum-neutral, and
have thin surface organics and shallow active-layer
depths. Permafrost is always present and
presumably ice-poor because of the recent
degradation. Ice wedges have yet to develop and
surfaces are not polygonized. This ecotype is
uncommon but is found in both parks.

Vegetation is dominated by Calamagrostis
canadensis and forbs. Associated species include
Poa arctica, Petasites frigidus, Valeriana capitata,
Polemonium  acutiflorum,  Rumex  arcticus,
Drepanocladus sp., and Aulacomnium palustre.

This ecotype is unusual because of the high
Calamagrostis cover and because it is restricted to
recently drained-lake basins. While intensive
sampling was insufficient to thoroughly
characterize this ecotype, it also was documented
in numerous verification plots.
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Table 21. Vegetation cover and frequency for
Lacustrine Moist Bluejoint Meadow (n=2).

Cover Freq

Mean SD (%)

Total Live Cover 1153 18.0 100
Total Vascular Cover 51.7 132 100
Total Deciduous Shrub Cover 0.6 0.8 50
Betula nana 0.1 0.1 50
Salix planifolia pulchra 0.5 0.7 50
Total Forb Cover 17.1 55 100
Arnica alpina 0.5 0.7 50
Artemisia tilesii 0.5 0.7 50
Ligusticum scoticum 0.1 0.1 50
Petasites frigidus 11.0 57 100
Polemonium acutiflorum 2.0 1.4 100
Rumex arcticus 1.0 0.0 100
Stellaria sp. 0.1 0.1 50
Valeriana capitata 2.0 1.4 100
Total Grass Cover 335 9.2 100
Calamagrostis canadensis 27.5 3.5 100
Poa arctica SL 6.0 5.7 100
Total Sedge Cover 0.5 0.7 50
Carex aquatilis 0.5 0.7 50
Total Nonvascular Cover 63.7 4.7 100
Total Lichen Cover 0.1 0.1 50
Nephroma sp. 0.1 0.1 50
Peltigera aphthosa 0.1 0.1 50
Total Moss Cover 63.6 49 100
Aulacomnium palustre 57.5 3.5 100
Aulacomnium turgidum 0.1 0.1 50
Drepanocladus sp. 4.0 1.4 100
Pohlia nutans 0.5 0.7 50
Polytrichum juniperinum 0.5 0.7 50
Polytrichum sp. 0.5 0.7 50
Total Bare Ground 57.6 248 100
Water 0.1 0.1 50
Litter alone 57.5 247 100




RIVERINE BARRENS

Plant Association:
Epilobium latifolium—Agropyron macrourum

Barren or partially vegetated (<30% cover)
areas on active river channel deposits associated
with meandering or braided rivers. Frequent
sedimentation and scouring restricts establishment
and growth of vegetation. Soils are well to
excessively drained, sandy to gravelly, alkaline to
circumneutral and lack surface organics.
Permafrost is always present and active-layer
depths are deep (>80 cm). Water usually is found at
the bottom of the active layer.

Typical pioneering plants include Salix
alaxensis, S. planifolia pulchra, Festuca rubra,
Elymus arenarius mollis, Artemisia arctica arctica,
Epilobium latifolium, and Oxytropis borealis.

This ecotype is relatively uncommon because
of the riverine setting and lack of vegetation. While
it has many of the species found in Riverine Tall
Willow Shrub, its shrub cover is much lower. It has
some species in common with Coastal Barrens,
particularly Elymus arenarius mollis, Artemisia
tilesii, and Deschampsia caespitosa.
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Table 22. Vegetation cover and frequency for
Riverine Barrens (n=6).
Cover Freq
Mean  SD (%)

Total Live Cover 16.2 21.6 150
Total Vascular Cover 15.9 21.6 150
Total Deciduous Shrub Cover 3.5 53 133
Salix alaxensis 1.5 1.7 117
Salix arbusculoides 0.1 0.3 17
Salix barclayi 1.0 3.2 33
Salix hastata 0.1 0.3 33
Salix niphoclada 0.4 1.3 17
Salix planifolia pulchra 0.3 0.7 50
Vaccinium uliginosum 0.0 0.0 17
Total Forb Cover 39 4.4 150
Artemisia arctica arctica 0.2 0.6 33
Artemisia glomerata 0.0 0.0 17
Artemisia tilesii 0.2 0.4 50
Aster sibiricus 0.4 0.7 83
Astragalus alpinus 0.0 0.0 50
Epilobium angustifolium 0.1 0.3 17
Epilobium ciliatum 0.0 0.0 17
Epilobium latifolium 1.6 2.5 117
Hedysarum alpinum 0.1 0.3 33
Linum perenne 0.1 0.3 17
Oxytropis borealis 0.5 1.6 17
Potentilla fruticosa 0.1 0.3 33
Rumex sp. 0.1 0.3 33
Stellaria sp. 0.0 0.1 33
Wilhelmsia physodes 0.0 0.1 67
Total Grass Cover 8.5 15.8 117
Agropyron boreale 0.0 0.0 33
Agropyron macrourum 0.1 0.3 17
Agropyron sp. 0.1 0.3 50
Arctagrostis latifolia 0.1 0.3 50
Bromus pumpellianus 0.1 0.3 17
Calamagrostis sp. 0.0 0.0 33
Deschampsia caespitosa 0.1 0.3 33
Elymus arenarius mollis 5.5 15.7 50
Festuca rubra 1.0 1.8 83
Poa alpigena 0.1 0.3 17
Poa alpina 0.1 0.3 33
Poa sp. 0.8 2.5 33
Trisetum spicatum 0.3 0.7 50
Total Sedge Cover 0.0 0.0 33
Carex bigelowii 0.0 0.0 17
Juncus castaneus 0.0 0.0 17
Total NonVascular Cover 0.4 0.8 67
Total Moss Cover 0.3 0.7 67
Ceratodon purpureus 0.2 0.6 17
Hylocomium splendens 0.0 0.0 17
Racomitrium lanuginosum 0.0 0.0 17
Rhytidium rugosum 0.0 0.0 17
Sanionia uncinata 0.0 0.1 17
Sphagnum obtusum 0.0 0.1 17
Total Bare Ground 86.4 20.0 167
Soil 82.1 233 167
Litter alone 4.3 5.0 133
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RIVERINE MOIST TALL Table 23.
ALDER-WILLOW SHRUB

Vegetation cover and frequency for
Riverine Moist Tall Alder—Willow Shrub

(n=3).

Cover Freq

Mean SD (%)

Total Live Cover 158.1 25.2 100

Total Vascular Cover 143.4 11.3 100

Total Deciduous Shrub Cover 92.7 14.5 100

Alnus crispa 60.0  40.0 100

Salix alaxensis 7.3 11.0 67

Salix arbusculoides 2.7 2.5 67

Salix barclayi 10.7 16.8 67

Salix glauca 6.7 11.5 33

Salix lanata richardsonii 1.0 1.7 33

Salix niphoclada 1.7 2.9 33

Salix planifolia pulchra 1.7 29 33

Spiraea beauverdiana 0.3 0.6 33

Vaccinium uliginosum 0.7 1.2 33

Total Forb Cover 17.3 10.2 100

Plant A iation: Aconitum delphinifolium 0.1 0.1 67

ant Associatio Anemone richardsonii 0.3 0.6 33

Alnus crispa_Salix barclayi Artemisia tilesii 2.0 1.7 67

Aster sibiricus 0.0 0.1 33

. . . . Equisetum arvense 0.7 0.5 100

Elat areas on active anq mactlve-ﬂ.oodplam Galium sp. 00 01 33

deposits subject to occasional flooding and Petasites frigidus 10.7 125 100

dominated by tall (>1.5 m) alder shrubs. Soils are Polemonium acutiflorum 07 05 100

composed of interbedded layers of riverine silts, Ranunculus sp. 0.0 01 33

. Rubus arcticus 1.3 0.6 100

sands, gravels, and organics, are ‘ seasonally Saxifraga punctata 0.7 0.6 67

saturated, moderately well drained, and Stellaria sp. 0.1 0.1 67

circumneutral. Permafrost is always present and Valeriana capitata 07 12 33

the active-layer is shallow. This ecotype is rare and Total Grass Cover 333 13 100

" . ) Arctagrostis latifolia 333 153 100

most notably found on the Serpentine River in Total Sedge Cover 0.0 0.1 33

BELA. It appears to be expanding along Luzula sp. 0.0 0.1 33

floodplains through water-born movement of Total NonVascular Cover 148 142 100

seeds Total Moss Cover 13.8 14.2 100

’ . . . Brachythecium mildeanum 1.7 2.9 67

Vegetation is dominated by an open cover of Brachythecium sp. 0.1 0.1 67

Alnus crispa, Salix barclayi, and other willows. Climacium dendroides 7.7 108 67

Common associated species include Salix glauca, g lagw'ﬁ"mm_e”tlptwum 3(3) gg g;
. . N . . . anionia uncinaila . .

Sa{zx ‘alaxenszs,. Pe?‘asztes frzgzdus, Arctagrostis Total Lichen Cover 10 0 67

latifolia, and Climacium dendroides. Parmelia sp. 1.0 1.0 67

This ecotype is distinctive because of the Total Bare Ground 81.7 29 100

presence of alder on river floodplains. It differs \Sx;"lt 2(3)-(3) 48-3 33
. . . ater . .

from Riverine Tall Willow Shrub by the abundance Litter alone 583 375 100

of Alnus crispa and Arctagrostis latifolia and the
lack of Aster sibiricus. This class was merged with
other early successional riverine shrubs and
mapped as Riverine Moist Low and Tall Willow
Shrub.
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RIVERINE MOIST TALL WILLOW

Plant Association:

Salix alaxensis—Aster sibiricus

Flat areas on active and inactive floodplain
deposits subject to frequent flooding and
dominated by tall (>1.5 m) willow shrubs. Active
floodplain sites have sandy, well-drained soils, are
circumneutral and lack organic horizons. On
inactive floodplain deposits, soils are composed of
interbedded layers of riverine silts and sands,
seasonally saturated, well to somewhat poorly
drained, circumneutral, and usually lack surface
organic layers. Permafrost is always present and
active-layer depths are the deepest of any ecotype.
This type is widespread in narrow zones along
rivers but is uncommon overall.

Vegetation is dominated by a closed to open
canopy of the tall shrub Salix alaxensis. Other
species include S. lanata richardsonii, Equisetum
arvense, Galium boreale, Artemisia tilesii, Aster
sibiricus, Petasites frigidus, Potentilla fruticosa,
Calamagrostis  canadensis, and Arctagrostis
latifolia.

This ecotype is most similar to Riverine Moist
Tall Willow shrub but lacks Alnus crispa. It differs
from Riverine Moist Low Willow Shrub and
Lowland Moist Low Willow Shrub by the lack of
Salix planifolia pulchra. This class was merged
with other early successional riverine shrubs and
mapped as Riverine Moist Low and Tall Willow
Shrub.
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Table 24. Vegetation cover and frequency for Riverine
Moist Tall Willow Shrub (n = 6).

Cover Freq

Mean SD (%)

Total Live Cover 1603  68.0 100
Total Vascular Cover 139.4  59.6 100
Total Evergreen Shrub Cover 0.3 0.5 33
Empetrum nigrum 0.3 0.5 33
Total Deciduous Shrub Cover 81.5 312 100
Arctostaphylos rubra 4.8 9.9 50
Salix alaxensis 425 16.0 100
Salix arbusculoides 3.5 8.1 33
Salix glauca 2.0 1.9 67
Salix hastata 1.4 2.1 50
Salix lanata richardsonii 147 243 50
Salix niphoclada 5.8 12.0 33
Salix planifolia pulchra 1.2 1.9 50
Salix reticulata 34 8.2 33
Total Forb Cover 458 42.1 100
Artemisia arctica arctica 1.0 2.0 33
Artemisia tilesii 2.0 2.4 67
Aster sibiricus 2.2 2.2 100
Astragalus alpinus 0.4 0.5 50
Castilleja caudata 1.2 2.0 33
Epilobium latifolium 1.8 2.1 50
Equisetum arvense 6.7 9.6 100
Equisetum variegatum 1.3 2.8 33
Galium boreale 152 304 83
Mertensia paniculata 1.7 4.1 17
Parnassia palustris 0.5 0.8 50
Pedicularis verticillata 0.4 0.8 67
Petasites frigidus 2.5 6.1 17
Polemonium acutiflorum 0.2 0.4 67
Polygonum viviparum 0.4 0.5 67
Potentilla fruticosa 3.0 3.0 67
Solidago multiradiata var. multiradiata 1.0 1.5 33
Valeriana capitata 0.2 0.4 67
Total Grass Cover 10.1 6.3 100
Arctagrostis latifolia 1.3 1.4 67
Calamagrostis canadensis 2.5 39 50
Festuca altaica 1.2 2.0 33
Festuca rubra 2.5 2.9 83
Poa alpina 0.8 1.0 50
Poa arctica SL 0.2 0.4 33
Trisetum spicatum 0.4 0.5 50
Total Sedge Cover 1.2 2.0 50
Carex aquatilis 0.8 2.0 17
Luzula multiflora 0.2 0.4 17
Luzula parviflora 0.2 0.4 17
Total Deciduous Tree Cover 0.5 0.8 33
Populus balsamifera 0.5 0.8 33
Total NonVascular Cover 209 205 100
Total Moss Cover 19.0 20.8 100
Brachythecium reflexum 2.5 6.1 17
Brachythecium sp. 70 162 50
Hylocomium splendens 1.0 2.0 33
Pohlia sp. 1.7 4.1 17
Polytrichum juniperinum 0.7 1.2 33
Racomitrium lanuginosum 1.3 2.2 33
Sanionia uncinata 1.3 33 17
Total Lichen Cover 1.9 2.9 33
Peltigera aphthosa 0.2 0.4 17
Stereocaulon alpinum 0.8 2.0 17
Stereocaulon sp. 0.8 2.0 17
Total Bare Ground 414 285 100
Soil 6.4 7.6 83
Litter alone 35.0 30.8 100
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Table 25. Vegetation cover and frequency for

Riverine Moist Low Willow Shrub (n=6).

RIVERINE MOIST LOW WILLOW

SHRUB
Cover Freq
q Mean  SD (%)
Total Live Cover 173.6 572 100
Total Vascular Cover 127.4 53.4 100
Total Evergreen Shrub Cover 7.1 18.3 50
Dryas integrifolia 5.9 14.3 33
Empetrum nigrum 1.7 4.1 17
Ledum decumbens 0.2 0.4 17
Total Deciduous Shrub Cover 94.4 39.2 100
Arctostaphylos rubra 15.3 23.0 83
Betula nana 5.2 4.3 83
Salix alaxensis 9.8 134 83
Salix arbusculoides 7.8 159 50
Salix glauca 13.3 16.0 83
Salix lanata richardsonii 11.7 14.7 67
Salix niphoclada 5.8 5.8 67
Salix planifolia pulchra 10.8 13.2 67
Salix reticulata 9.2 10.6 83
Vaccinium uliginosum 5.0 8.4 33
Total Forb Cover 11.3 6.8 100
ot N Astragalus alpinus 0.4 0.5 50
Plal_lt ASSOCIaFlon' B . Cardamine pratensis 0.1 0.1 50
Salix lanata richardsonii—Festuca altaica Equisetum arvense 0.7 12 133
Galium boreale 0.4 0.8 33
Flat areas on inactive floodplain deposits Hedysarum alpinum 04 05 = 30
bject to infrequent flooding with vegetation Lupinus arcticus 17 2633
su -]E?C q g . g Polemonium acutiflorum 0.2 0.4 50
dominated by low shrubs. Soils are interbedded Potentilla fruticosa 23 20 83
alluvial silts, sands, and organics, moderately well Rubus arcticus 13 22 33
to somewhat poorly drained, and circumneutral. f/’el”“.r lasp. g-é 8-;‘ gg
Permafrost is always present and the active layer is Tﬁgf‘gfasglgfvtz , 3.4 67 100
moderately deep (40-80 cm). Arctagrostis latifolia 0.1 0.1 50
Vegetation is dominated by an open or closed Calamagrostis canadensis 2.8 6.0 33
canopy of low willows, most commonly a mixture 5 estuca ‘?ltalscf g; (5)'2 g;
of Salix lanata richardsonii, S. glauca, ngrggge Cover 57 64 83
S.  planifolia  pulchra, S. alaxensis, and Carex aquatilis 0.2 04 33
S. arbusculoides. Other species present include Carex bigelowii 33 52 33
Betula nana, Salix reticulata, Arctostaphylos Carex capillaris 0.5 12 33
rubra, Valeriana capitata, Festuca altaica, :g:zi gﬁg:lacs(f:::r Cover 225 ;g; }88
Calamagrostis  canadensis, Carex bigelowii, Aulacomnium acuminatum 1.7 4.1 17
Tomentypnum nitens, and Hylocomium splendens. Aulacomnium palustre 2.5 42 50
This ecotype is similar to Lowland Moist Low Aulacomnium turgidum 08 20 17
. .. . Bryum sp. 0.9 2.0 33
Willow  Shrub,  Riverine  Moist  Dwarf Campylium polygamum 42 102 33
Birch—Willow Shrub, and Upland Moist Low Ceratodon purpureus 2.5 42 33
Willow Shrub but differs by having Salix Climacium dendroides 07 08 50
alaxensis, S. arbusculoides, and S. niphoclada. Dl‘”“”“"? SP- 2.0 4.0 3
. ) Hylocomium splendens 9.2 12.0 50
This class was merged with other early Hypnum lindbergii 0.8 2.0 17
successional riverine shrubs and mapped as Hypnum pratense 33 8.2 17
Riverine Moist Low and Tall Willow Shrub. Sanionia uncinata .o 20 50
Tomentypnum nitens 15.8 18.8 83
Total Bare Ground 53.7 16.6 100
Soil 0.4 0.5 50
Litter alone 53.3 16.6 100
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Table 26.

RIVERINE MOIST DWARF
BIRCH-WILLOW SHRUB

Vegetation cover and frequency for Riverine
Moist Dwarf Birch—Willow Shrub (n=6).

Cover Freq

Mean SD (%)
Total Live Cover 170.5 352 100
Total Vascular Cover 116.8 16.6 100
Total Evergreen Shrub Cover 1.9 1.8 83

Ledum decumbens 0.9 1.0 67

Vaccinium vitis-idaea 1.0 20 50

Total Deciduous Shrub Cover 87.3 13.4 100

Arctostaphylos rubra 0.8 20 17

Betula nana 32.5 27.5 100

Salix barclayi 0.5 1.2 17

Salix glauca 5.5 80 67

Salix hastata 0.5 0.8 33

Salix lanata richardsonii 1.7 4.1 17

Salix planifolia pulchra 353 31.8 100

Vaccinium uliginosum 10.2 10.2 100

Total Forb Cover 14.3 84 100

Plant Association: Equisetum arvense 1.0 1.5 33
. g Petasites frigidus 6.7 7.3 100

Betula nana—Salix planifolia pulchra—Pyrola Polemonium acutiflorum 02 04 83
grandiflora Polygonum bistorta 0.5 1.2 17
Potentilla fruticosa 1.2 1.5 50

. . . . Pyrola grandiflora 1.3 1.0 83

. Flat areas on 1nact1ve. ﬂoodplaln depoglts Rubus chamaemorus 29 35 33
subject to infrequent flooding with vegetation Saussurea angustifolia 05 08 33
dominated by low shrubs. Soils are interbedded Valeriana capitata 0.5 05 83
alluvial silts, sands, and organics, moderately well Total Grass Cover 8.2 3.7 100
hat Iv drained. circumneutral. and Arctagrostis latifolia 2.7 38 67

to SOHleW at poorly I:alne » clrcumneutra > a Calamagrostis canadensis 2.5 42 33
have thin surface organic layers due to occasional Calamagrostis sp. 0.5 12 17
sedimentation. Permafrost is always present and Festuca altaica 1.0 1.3 50
the active layer is moderately deep (40-80 cm). Festuca rubra 0.3 05 33
Vi . is domi db losed Poa arctica SL 1.2 19 50
egetation 1S dominated by an open to close Total Sedge Cover 52 98 67
canopy of Betula nana and Salix planifolia Carex aquatilis 0.2 04 17
pulchra. Other common species include Vaccinium Carex bigelowii 22 39 67
uliginosum, Petasites frigidus, Calamagrostis Eriophorum angustifolium 1.2 2033
. . © . Eriophorum vaginatum 1.7 4.1 17
canadensis, Arctagrostis latifolia, and Hylocomium Total NonVascular Cover 537 279 100
splendens. Total Moss Cover 51.6 265 100
This ecotype is very similar to Lowland Aulacomnium acuminatum 25 61 17
Dwarf Birch-Willow Shrub and they share the  Aulacomnium palusire 4278 83
. . K Aulacomnium turgidum 1.2 1.5 67

same plant association. It differs by having very Calliergon giganteum 03 08 17
low cover of the shrubs Vaccinium vitis-idaea, Dicranum sp. 0.7 12 33
Ledum decumbens, and Empetrum nigrum. It is a glyloco’f‘i”m SIZ"?’Z‘Z@S 20.0 24-; ’133
late-successional community that occurs on curozium Sereert 33 82 17
. . . Polytrichum juniperinum 0.7 1.2 33
surficial deposits at the last stages of floodplain Sanionia uncinata 1.9 40 50
development and grades into abandoned overbank Sphagnum spp. 42 102 17
floodplain deposits associated with lowland ~ Tomeniypnum nitens 105195 67
ecotypes Total Lichen Cover 2.1 1.9 83
types. Cetraria islandica cf 0.2 0.4 17
Cladina rangiferina 0.2 04 33

Peltigera aphthosa 1.2 20 33

Total Bare Ground 31.7 21.6 100

Soil 0.0 0.0 0

Litter alone 31.7 21.6 100
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RIVERINE WATER

Permanently flooded channels of freshwater
rivers and lakes on well-developed floodplains.
River water is alkaline and sediments are gravelly.
Most mappable areas in the parks are low-gradient
meandering rivers that reach peak flood in late
spring. High-gradient headwater streams at upper
elevations typically are too narrow to be mappable.
Lakes on floodplains are included in this class
because they are subject to periodic flooding and
usually have fish communities similar to those of
adjacent rivers.

COASTAL BARRENS

Plant Associations:

Elymus arenarius mollis—Lathyrus maritimus;
Carex ramenskii—Puccinellia phryganodes

BELA-CAKR Landcover Mapping

Barren or partially vegetated (<30% cover),
salt-affected areas on tidal flats, deltas, dunes, and
beaches along the coast that may be frequently
inundated or affected by storm surges. Soils are
sandy, lack surface organics, brackish, and have
deep (>80 cm) active layers. Permafrost is always
present and presumably ice-poor.

Common colonizing plants on dry brackish
sites include Elymus arenarius mollis, Honkenya
peploides,  Artemisia  tilesii, and Lathyrus
maritimus. Plants on saline wet sites include Carex
subspathacea, Potentilla egedii, and
Chrysanthemum arcticum; species that also are
typical of the Carex  ramenskii—Puccinellia
phryganodes plant association of more vegetated
sites.

This class also includes tundra that has been
killed by saltwater intrusions from storm surges
and is being colonized by salt-tolerant plants.
Newly deposited sediments typically are found on
top of a thick organic horizon. These areas have
low pH, high salinity, and shallow thaw depths.

Table 27. Vegetation cover and frequency for
Coastal Barrens (n=7).

Cover Freq

Mean SD (%)

Total Live Cover 3.6 6.1 57
Total Vascular Cover 34 6.1 42
Total Deciduous Shrub Cover 00 0.1 14
Salix ovalifolia 0.0 0.0 14
Total Forb Cover 14 24 42
Artemisia tilesii 0.0 0.0 14
Chrysanthemum arcticum 0.0 0.0 14
Honckenya peploides 0.9 1.5 28
Lathyrus maritimus 02 04 28
Mertensia maritima 0.3 0.8 14
Potentilla Egedii 0.0 0.0 14
Senecio sp. 0.0 0.0 14
Stellaria humifusa 0.0 0.0 14
Total Grass Cover 1.9 3.8 42
Elymus arenarius mollis 1.9 3.8 42
Festuca rubra 0.0 0.0 14
Total Sedge Cover 0.1 0.4 14
Carex subspathacea 0.1 0.4 14
Total NonVascular Cover 0.1 0.2 42
Total Moss Cover 0.1 0.2 42
Bryum pseudotriquetrum 0.0 0.1 14
Ceratodon purpureus 0.0 0.1 14
Dicranum spadiceum 0.0 0.1 14
Leptobryum pyriforme 0.0 0.1 14
Total Bare Ground 98.4 3.7 100
Soil 96.0 6.0 100
Water 0.1 0.4 14
Litter alone 2.3 3.9 57




COASTAL DRY DUNEGRASS MEADOW

Plant Association:

Elymus arenarius mollis—Lathyrus maritimus

Coastal dunes and beach fringes with
vegetation dominated by grasses. Soils are sandy,
excessively drained, unstable and circumneutral
with no organic horizon. Permafrost is always
present and active-layers are deep (>80 cm).

Vegetation is dominated by Elymus arenarius
mollis, with scattered individuals of Artemisia
tilesii, Chrysanthemum bipinnatum, and
Deschampsia caespitosa.

This class is similar to Coastal Barrens but
differs by having >30% vegetation cover. It differs
from Upland Dry Crowberry Tundra, which occurs
on inactive dunes and is a late-successional
ecotype that develops from Coastal Dry Dunegrass
Meadow by lacking Empetrum nigrum.
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Table 28. Vegetation cover and frequency for
Coastal Dry Dunegrass Meadow (n=4).
Cover Freq
Mean SD (%)

Total Live Cover 55.5 28.7 100
Total Vascular Cover 553 28.7 100
Total Forb Cover 26.2 18.2 100
Artemisia tilesii 1.3 1.4 100
Aster sp. 0.3 0.5 25
Astragalus eucosmus sealei 0.3 0.5 25
Bupleurum triradiatum 0.3 0.5 50
Chrysanthemum arcticum 0.0 0.1 25
Chrysanthemum bipinnatum 0.0 0.1 25
Cnidium cnidiifolium 1.5 1.3 75
Conioselinum chinense 0.8 1.5 25
Honckenya peploides 1.0 0.8 75
Lathyrus maritimus 17.5 15.0 75
Mertensia maritima 0.5 1.0 25
Papaver lapponicum 0.0 0.1 25
Saussurea nuda 0.0 0.1 25
Saxifraga bronchialis 0.0 0.1 25
Senecio pseudoarnica 2.5 5.0 25
Stellaria sp. 0.3 0.5 25
Total Grass Cover 29.0 11.8 100
Bromus sp. 0.8 1.5 25
Deschampsia caespitosa 0.0 0.1 25
Elymus arenarius mollis 25.0 7.1 100
Festuca rubra 0.8 1.5 25
Festuca sp. 1.3 2.5 25
Poa arctica SL 1.3 2.5 25
Total Sedge Cover 0.0 0.1 25
Triglochin maritimum 0.0 0.1 25
Total NonVascular Cover 0.3 0.5 50
Total Moss Cover 0.3 0.5 50
Bryum sp. 0.3 0.5 50
Total Bare Ground 72.6 35.7 100
Soil 6.3 7.4 100
Water 0.0 0.0 0
Litter alone 66.3 37.5 100
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COASTAL BRACKISH WET
SEDGE-GRASS MEADOW

Table 29. Vegetation cover and frequency for Coastal

Brackish Wet Sedge—Grass Meadow (n=7).

Cover Freq
Mean  SD (%)
Total Live Cover 52.7 147 100
Total Vascular Cover 48.1 114 100
Total Evergreen Shrub Cover 0.2 0.4 29
Empetrum nigrum 0.2 0.4 29
Total Deciduous Shrub Cover 5.0 7.5 71
Salix fuscescens 0.1 0.4 14
Salix ovalifolia 4.9 7.6 57
Total Forb Cover 8.4 49 100
Androsace chamaejasme 0.0 0.0 14
Castilleja elegans 0.1 0.4 14
Chrysanthemum arcticum 0.3 0.5 29
Chrysanthemum bipinnatum 0.0 0.0 14
Cochlearia officinalis arctica 1.6 2.0 43
Lathyrus maritimus 0.1 0.4 14
Melandrium apetalum 0.0 0.0 14
Pedicularis langsdorffii arctica 0.1 0.4 14
Plant Associations: Pedicularis sudetica 0.6 1.0 29
.. . . Polygonum sp. 0.0 0.0 14
Carex ramenskii—Dupontia fisheri Potentilla egedii 16 37 M
Salix ovalifolia—Deschampsia caespitosa Potentilla sp. 0.0 0.1 43
Primula borealis 0.0 0.0 14
. . . . R ti 0.2 0.3 86

Flat areas on active and inactive tidal flats umex arcticis
. . . Saxifraga exilis 0.7 1.9 14
along the coast with vegetation dominated by Sedum rosea 0.0 0.0 14
halophytic sedges and dwarf shrubs. Soils are Stellaria humifitsa 2.9 36 71
loamy, poorly drained, brackish, and have little to Total Grass Cover 11.7 69 100
£ ic 1 Permafrost is alwavs Arctagrostis latifolia 0.7 1.9 14
No surlace organic ayer.s. way Calamagrostis deschampsioides 4.3 4.5 57
present and presumably ice-poor due to frequent Calamagrostis holmii 17 37 29
sedimentation. This type is common along the Deschampsia caespitosa 2.4 3.8 43
coast, particularly at deltas, but rare overall. Dupontia fisheri . 21 2.1 71
Veoetati lower. tter sites is dominated Elymus arenarius mollis 0.2 0.4 29
cgetation on fower, wetler sites 1s dominate Poa arctica SL 03 08 14
by Carex ramenskii, Dupontia fisheri, and Total Sedge Cover 22.9 67 100
Calamagrostis deschampsioides. On moderately Carex amblyorhynca 0.7 1.9 14
well drained sites, particularly on low, indistinct Carex aquatilis 04 08 29
. p g Carex canescens 0.3 0.8 14
levees along the sloughs, Salix ovalifolia, Carex ramenskii 207 98 100
Deschampsia caespitosa, Elymus arenarius mollis, Eriophorum angustifolium 0.3 08 29
and Stellaria humifus occur. The plant associations Juncus albescens 0.4 1.1 14
with these varying dominant species were grouped Total NonVascular Cover 46 101 29
. . Total Moss Cover 4.6 10.1 29
into one  ecotype because they are highly Aulacomnium palusire 03 08 14
interspersed and could not be mapped separately. Bryum pallescens 0.7 1.9 14
This ecotype is similar to Coastal Saline Wet Bryum sp. 1.1 20 29
Sedge—Grass Meadow but differs by the lack of Campylium polygamum 0.7 1914
. . Campylium sp. 1.1 2.0 29
Puccinellia phryganodes and the presence of Leptobryum pyriforme 07 1.9 14
Dupontia fisheri and/or Salix ovalifolia. The two Total Bare Ground 66.6 21.7 100
halophytic wet meadows were merged for mapping Ssil g-;‘ 13-‘5‘ gg

ater . .

as Coastal Wet Sedge—Grass Meadow. Litter alone 570 210 100
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COASTAL SALINE WET SEDGE-GRASS
MEADOW

Plant Association: Carex ramenskii—Puccinellia
phryganodes

Low-lying, salt-affected areas on active tidal
flats and deltas along the coast that are frequently
to irregularly flooded and have vegetation
dominated by halophytic sedges and grasses. The
vegetated surface is nonpatterned but small tidal
ponds frequently are interspersed within the
meadows. Soils are saline (>16,000 pS/cm), very
poorly drained, and sandy to loamy with variable
organic horizon depths. Permafrost is always
present and the active layer is moderately thick.

Vegetation is dominated by Carex ramenskii,
Puccinellia phryganodes, Calamagrostis
deschampsioides,  Elymus  arenarius  mollis,
Chrysanthemum arcticum, and Potentilla egedii.
Mapped as Coastal Wet Sedge—Grass Meadow.

Table 30. Vegetation cover and frequency for
Coastal Saline Wet Sedge—Grass Meadow
(n=6).

Cover Freq

Mean SD (%)

Total Live Cover 55.8 9.5 100

Total Vascular Cover 55.7 9.3 100

Total Forb Cover 163 103 100

Chrysanthemum arcticum 7.3 6.6 100

Potentilla Egedii 8.5 9.7 83

Saussurea nuda 04 0.8 33

Stellaria humifusa 0.1 0.0 100

Total Graminoid Cover 14.2 7.8 83

Calamagrostis deschampsioides 2.5 4.2 33

Elymus arenarius mollis 40 43 83

Puccinellia phryganodes 7.7 6.1 83

Carex ramenskii 193 103 100

Carex subspathacea 58 10.2 33
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COASTAL WATER

Coastal Lak |

Coastal Water is comprised of nearshore
marine and estuarine waters and coastal lakes.
Nearshore water includes open waters of Bering
Strait, Chukchi Sea and Kotzebue Sound. Coastal
Lakes are flooded periodically with saltwater
during high tides or storm surges. Salinity levels
often are increased by subsequent evaporation of
impounded saline water. The substrate is sandy to
loamy and occasionally contains peat. Shorelines
usually have halophytic vegetation. Some Coastal
Lakes have distinct outlets or have been partially
drained (tapped) through erosion of river banks.
Shallow lakes (<1.5m) freeze to the bottom during
winter. Hippuris tetraphylla occasionally is present
in coastal ponds.
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HUMAN MODIFIED BARRENS

Plant Association: None

Barren or partially (<30% cover) vegetated
areas that have been disturbed by human activity.
Roads, airstrips, buildings, mines, and clearings are
included in this class. Partially vegetated areas
have pioneering indigenous species. In the study
area, this ecotype was mapped only along the road
to the Red Dog mine, although other barren areas
such as airstrips and old mine sites are known to
occur. Areas adjacent to the road are affected by
dust, making the mapping of vegetation types
along the road unreliable.

UNUSUAL ECOTYPES

Unusual ecotypes that were insufficiently
sampled to reliably classify include: Alpine Lake,
Riverine Moist Broadleaf Forest, Riverine Dry
Dryas Shrub, Riverine Moist Sedge—Dryas
Meadow, Riverine Dry Grass Meadow, and Coastal
Forb Marsh. In addition to being rare, these types
also were too small to map.

Alpine Lakes occur at high elevations, are
oligotrophic, lack submergent and emergent
vascular plants, and are noted by the clear blue or
turquoise color of the water. Alpine Lakes are
restricted to the Bendeleben-Darby Mountains and
were included in the Lowland Water class for
mapping.

Riverine Moist Broadleaf Forest occurs on
sandy or gravelly point bars along meandering

BELA-CAKR Landcover Mapping

rivers. Vegetation is dominated by Populus
balsamifera, Salix alaxensis, Equisetum arvense,
Calamagrostis  canadensis, Petasites frigida,
Artemisia  tilesii, Mertensia paniculata, and
Galium boreale. This type was found in the
southern portions of both BELA and CAKR and at
one hillside spring. It was included in the Riverine
Moist Low and Tall Willow Shrub class for
mapping.

Riverine Dry Dryas Shrub occurs on dry river
terraces. Vegetation is dominated by Dryas
integrifolia or Dryas drummondii. This type was
mapped as Riverine Barrens.

Riverine Moist Sedge—Dryas Shrub Meadow
occurs on poorly drained organic-rich floodplains.
Vegetation is similar to Lowland Moist
Sedge—Dryas Meadow. This type was included in
the Riverine Moist Dwarf Birch—Willow Shrub
class for mapping.

Riverine Dry Grass Meadow occurs on sandy
or gravelly point bars along meandering rivers.
Vegetation is dominated by Elymus arenarius
mollis, Festuca rubra, Agropyron macrourum,
Artemisia tilesi, Aster sibericus, and Deschampsia
caespitosa. It was classified as Riverine Barrens or
Riverine Moist Low and Tall Willow Shrub during
mapping.

Coastal Forb Marsh occurs in shallow
brackish coastal ponds. Vegetation is dominated by
Hippurus tetraphylla. 1t was mapped as either
Coastal Water or Coastal Wet Sedge—Grass
Meadow depending on pond size.

KEY TO ECOTYPES

A key was developed to differentiate the
ecotypes in the field using vegetation structure
(based on Viereck et al. 1992), physiography, and
characteristic species (Table 31). Characteristics of
unusual ecotypes also are included in the key to
assign the most appropriate similar class to these
nonmapped ecotypes directly.
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Table 31.  Key to ecotypes for Bering Land Bridge National Preserve and Cape Krusenstern National
Monument, western Alaska.'?

la. Permanent waterbody (water typically >10 cm deep)........covviiiiiiiiiiiii e 2
1b. Not a permanent Waterbody..........ooiiiiiiii i 5

2a. Waterbody without emergent vegetation

3a. Site has saline or brackish water (>800 uS/cm) near the coast. ........c..ccveevrrennnnen. Coastal
Water
3b. Site is a perennial freshwater river (flowing water).................ccoevvvvinnn.. Riverine Water

3c. Site is a freshwater lake or pond on the floodplain (flat terrain subject to periodic flooding

and sedimentation) of a perennial TIVer. ..........cc.oeiviiiiiiiiiiiiiiieieiiaeannns Riverine Water
3d. Site is a freshwater lake or pond and not on a floodplain............................ Lowland Water
2b. Waterbody with emergent herbaceous vegetation >10% COVer...........covviiiiiiiiiiiinnnn... 4

4a. Site is a shallow freshwater lake or lake fringe with vegetation dominated by Hippuris
vulgaris (uncommon Carex aquatilis or Arctophila fulva dominated marshes are included,
class NOt MAPPEA)....cccvievieiieiieiieie ettt e e Lacustrine Marestail Marsh

4b. Site is a shallow brackish lake or lake fringe with vegetation dominated by Hippuris

LtraPIYIIQ. ... ettt e e e a e e e e COASTAl Water
5a. Barren or only partially vegetated land with total cover of vascular vegetation <30%.................... 6
5b. Vegetation COVET 2300, ....ceuiiiiuieieieeit ettt ettt ettt ettt e sttt e e s bttt et et e abesbeeat e tesbeeneebeenseneeenes 7
6a. Site is at high elevation (~>700 m) on carbonate bedrock ........... Alpine Alkaline Dry Barrens
6b.  Site is at high elevation on noncarbonate bedrock ................ Alpine Nonalkaline Dry Barrens
6¢c. Site is in a low-lying, salt-affected coastal area.................c..oooviiiiiiinn... Coastal Barrens
6d. Site is on the floodplain of a perennial freshwater river...........ccccoeevevverveneennnns Riverine Barrens
6e. Site is a rocky slope, ridge, or lava flow below 700m ................. Upland Dry Lichen Barrens

6f.  Site has been highly disturbed by humans (roads, pads, airstrips)...... Human-Modified Barrens

7a. Needleleaf trees have a canopy >10% ......ooevvvviiiiiiiiiiiiiiiiienn, Upland Moist Spruce Forest

7b. Needleleaf trees have a canopy <LOY0 . .....oneeinie e 8
8a. Tall shrubs (>1.5 m tall) have a canopy COVEL 225 Y0.....cccveruiriirriieiieieeieee e 9
8b. Tall shrubs have a cCanopPy COVET <25 Y0 .eovuiiriirieieeieciie ettt ettt s e eesseenaeenes 10
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Table 31. Continued.

9a.  Site is on the floodplain of a freshwater river and vegetation is dominated by tall willows (Salix
alaxensis) without alder (4ster sibiricus is common, this class was merged into Riverine Moist
Low and Tall Willow Shrub for mapping)...................... Riverine Moist Tall Willow Shrub

9b. Site is on the floodplain of a freshwater river and vegetation is dominated by tall willows (Salix
alaxensis) and alder (Arctagrostis latifolia is common, this class was merged into Riverine

Moist Low and Tall Willow Shrub for mapping) ...... Riverine Moist Tall Alder—Willow Shrub

9c. Site is a drainage (sometimes lower slope) and is dominated by tall willows (Salix planifolia

pulchra) or occasionally alder ........................... Lowland Moist Tall Alder—Willow Shrub
10a. Low shrubs (0.2—1.5 m tall) have a canopy cover 225 % ..c.cccvvviririninininiseneeeeeeeseee e 11
10b. Low shrubs have a canopy coVer <25% ......uiuiniiiiit it 12

11a. Site is a gentle middle or upper slope (sometimes high-centered polygons on flats) with shrub
birch and willows, and cover of whole tussocks (Eriophorum vaginatum) >15%
............................................................... Upland Moist Dwarf Birch—Tussock Shrub

11b. Site is a middle or upper slope with shrubs dominated by dwarf birch (Betula nana), ericaceous
shrubs, and lichens (willow <10% cover)......... Upland Moist Dwarf Birch—Ericaceous Shrub

l1c. Site is a middle or upper slope with shrubs dominated by low willows (Salix glauca, Salix
planifolia pulchra, Salix lanata richardsonii) and lacks Sphagnum
........................................................................... Upland Moist Low Willow Shrub

11d. Site is a lower slope, flat, drained basin, or abandoned floodplain (surface organics >20cm deep)
with vegetation dominated by dwarf birch, willows (Salix planifolia pulchra) and Sphagnum
................................................... Lowland Moist Dwarf Birch—Willow Shrub

11e. Site is a lower slope, flat, drained basin, or abandoned floodplain (surface organics >20cm deep)
with vegetation dominated by willows (Salix planifolia pulchra) and Sphagnum
........................................................................ Lowland Moist Low Willow Shrub

11f. Site is a wet flat or depression in an organic-rich lowland and vegetation is dominated by Betula
nana, ericaceous shrubs and Sphagnum (dwarf shrubs are present and may be co-dominant)
...................................... Lowland Wet Dwarf Birch—Ericaceous Shrub

11g. Site is on a river floodplain with vegetation dominated by dwarf birch and willows (Salix
planifolia pulchra) (Petasites frigidus is common; this class was merged into Riverine Moist
Low and Tall Willow Shrub for mapping) ............ Riverine Moist Dwarf Birch—Willow Shrub

11h. Site is on a river floodplain (soil surface organic horizon is <20 cm) with vegetation dominated
by willows (Salix lanata richardsonii, S. planifolia pulchra, and S. alaxensis) and lacks
Sphagnum (Festuca altaica is common; this class was merged into Riverine Moist Low and

Tall Willow Shrub for mapping) .............ccceeevvinnnnnn. Riverine Moist Low Willow Shrub
12a. Dwarf shrubs (<0.2 m) have a canopy coVer 225%......cccouiiiiiiniiii e 13
12b. Dwarf shrubs have a canopy COVET <25%0. .. uuinriiniitiitt et e reaeaeas 16
13a. Elevation is high (usually >700 m) creating severely exposed alpine conditions ................. 14
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Table 31. Continued.

14a. Bedrock is limestone, marble or other carbonate deposit (soil pH = 7.4) and vegetation is
dominated by Dryas and lichens............................... Alpine Alkaline Dry Dryas Shrub

14b. Bedrock is not a carbonate deposit, vegetation is dominated by Dryas
................................................................... Alpine Nonalkaline Dry Dryas Shrub

13b. Elevation is low (usually <700 m) without alpine conditions ...........................coa 15

15a. Site is a gentle mid- or upper slope (sometimes high-centered polygons on flats) with dwarf
and low shrubs, and cover of whole tussocks (Eriophorum vaginatum) >15%
......................................................... Upland Moist Dwarf Birch—Tussock Shrub

15b. Site is an inactive sand dune in a coastal area and vegetation is dominated by crowberry
(Empetrum Nigrum)........c.o.uuu it Upland Dry Crowberry Shrub

15¢. Site is a wet flat or depression in an organic-rich lowland and vegetation is dominated by
dwarf shrubs (Ledum decumbens, Empetrum nigrum, Oxycoccus microcarpus) and
Sphagnum (Betula nana is common and may be co-dominant)
........................................... Lowland Wet Dwarf Birch—Ericaceous Shrub

16a. Herbaceous vegetation co-dominated by sedges and low and dwarf shrubs (usually 15-25%
cover) and SOILS are MOIST ..........coc.oiiiiiiiiiiiiii ettt e et e e e e 17
16b. Herbaceous vegetation without substantial low and dwarf shrub cover............................. 18

17a. Whole tussocks of Eriophorum vaginatum >15%...... Upland Moist Dwarf Birch—Tussock Shrub

17b. Site is moderate hillside slope with vegetation dominated by Carex bigelowii and Dryas
integrifolia, lichens may be abundant .......................... Upland Moist Sedge—Dryas Meadow

17c. Site is a gentle to moderate slope in low-lying areas with vegetation dominated by Carex
bigelowii, Equisetum arvense, and Dryas integrifolia, and lichen are sparse
........................................ Lowland Moist Sedge—Dryas Meadow

18a. Herbaceous vegetation is dominated by sedges and soils are wet.......................ooooiiine . 19
18b. Herbaceous vegetation is not dominated by sedges............ooviiiiiiiiiiiiiii e, 20

19a. Site is a flat, drained basin (surface organics usually >40cm deep) dominated by sedges (Carex
aquatilis, C. chordorrhiza), and aquatic mosses ................. Lowland Sedge Fen Meadow

19b. Site is a flat, drained basin, or abandoned floodplain with vegetation dominated by sedges
(Carex aquatilis) and Sphagnum spp, often with scattered ericaceous shrubs
.................................................................... Lowland Sedge—Moss Fen Meadow

19c. Site is a flat or depression in a saline coastal area with vegetation dominated by sedges (Carex
ramenskii, C. subspathacea), and grasses (Puccinellia phryganodes)
.................................................................. Coastal Saline Wet Sedge—Grass Meadow

19d. Site is a flat or depression in a brackish coastal area with vegetation dominated by Carex

ramenskii and/or Dupontia fischeri, Salix ovalifolia, Deschampsia caespitosa
................................................................. Coastal Brackish Sedge—Grass Meadow
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Table 31.  Continued.

20. Herbaceous vegetation is dominated by grasses

21a. Site is a well-drained active sand dune in a salt-affected coastal area and vegetation is

dominated by Elymus arenarius mollis.....

....................... Coastal Dry Dunegrass Meadow

21b. Site is on somewhat well-drained soils in young drained-lake basins with vegetation dominated

by Calamagrostis canadensis................

................... Lacustrine Moist Bluejoint Meadow

Note:

1. Shrub cover cutpoints represent general guidelines and classification decisions should also rely on dominant indicator species
and landscape position. For example, Upland Moist Sedge—Dryas Meadow can sometime have 30-35% cover of shrubs, but
should still be classified as a sedge—dryas meadow based on dominance of Carex bigelowii and Dryas integrifolia.

2. Rare ecotypes were not included in mapping and analysis. These include Alpine Lake (mapped as Lowland Lake), Riverine
Moist Broadleaf Forest (Riverine Moist Low and Tall Willow Shrub), Riverine Dry Dryas Shrub (Riverine Barrens), Riverine
Moist Sedge—Dryas Meadow (Riverine Moist Dwarf Birch-Willow Shrub), Riverine Dry Grass Meadow (Riverine Barrens),
Riverine Wet Sedge Tundra (Lowland Sedge Moss Fen) and Coastal Forb Marsh (Coastal Water).

MAPPING

ABUNDANCE AND DISTRIBUTION

The mapping differentiated 18 vegetation
types and 29 ecotypes, based on a supervised
classification of spectral characteristics of the three
Landsat TM scenes and modeling of the
physiography and bedrock associated with
ecosubsection maps and digital elevation models
(Figures 4 and 5). The initial supervised
classification of 18 signature vegetation types was
subdivided into 29 ecotypes through the rule-based
modeling. In the final map, four ecotypes identified
by the ground data were combined with other
classes because they could not be mapped
separately (Appendix 9). The most abundant
ecotypes within the park boundaries include
Upland Moist Dwarf Birch—Ericaceous Shrub,
Upland Moist Dwarf Birch-Tussock Shrub,
Upland Moist Sedge—Dryas Meadow, Lowland
Moist Sedge-Dryas Meadow, and Lowland
Sedge—Moss Fen Meadow (Table 32). To simplify
the map and improve map accuracy, the 29
ecotypes also were aggregated into 12 classes
based on ecological and spectral similarity.

BELA-CAKR Landcover Mapping

ACCURACY ASSESSMENT

Signature evaluation prior to supervised
classification showed the fidelity of signatures to
themselves (percentage of pixels within signature
areas correctly classified to themselves) was very
high (90%) for 49%, high (80-89%) for 27%,
moderately high (60-79%) for 17%, and low
(<60%) for 7% of signatures. Overall, 76% of the
signatures self-classify (=80% of pixels within
signatures) and are therefore distinct and separable.
The ability of the signatures to classify to the
correct signature vegetation type (percentage of
pixels within a signature area classifying to the
correct vegetation type) was very high (90%) for
80%, high (80-89%) for 18%, and moderately high
(70-79%) for 2% of the training areas. This
indicates that the 389 signatures used in the
supervised classification were highly reliable; the
signature vegetation was classified correctly (80%
of pixels within signature) in 98% of the training
signatures.

To assess the variability of signatures for any
given signature vegetation type, the values of the
first and second axes of the principal components
analysis were plotted to identify any overlaps of
signatures among the various vegetation types
(Figure 6). These axes explained 95% of the
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Table 32.  Areal extent of ecotypes and vegetation types within the Bering Land Bridge National
Preserve and Cape Krusenstern National Monument, Alaska.

Bering Land Bridge Cape Krusenstern

ha % ha %
Map Ecotype
Alpine Alkaline Dry Barrens 6779 0.6 9038 34
Alpine Alkaline Dry Dryas Shrub 18769 1.7 7209 2.7
Alpine Nonalkaline Dry Barrens 6055 0.6 729 0.3
Alpine Nonalkaline Dry Dryas Shrub 15152 1.4 1647 0.6
Upland Dry Lichen Barrens 24275 2.2 1 0.0
Upland Moist Spruce Forest 0 0.0 1018 0.4
Upland Dry Crowberry Shrub 3018 0.3 1502 0.6
Upland Moist Low Willow Shrub 43322 3.9 10900 4.1
Upland Moist Dwarf Birch—Ericaceous Shrub 63932 5.8 56127 21.1
Upland Moist Dwarf Birch-Tussock Shrub 394856 359 79007 29.7
Upland Moist Sedge—Dryas Meadow 149507 13.6 28553 10.7
Lowland Moist Tall Alder—Willow Shrub 2263 0.2 2264 0.9
Lowland Moist Low Willow Shrub 39520 3.6 9807 3.7
Lowland Moist Dwarf Birch—-Willow Shrub 11355 1.0 4692 1.8
Lowland Wet Dwarf Birch—Ericaceous Shrub 46239 4.2 11699 4.4
Lowland Moist Sedge—Dryas Meadow 83163 7.6 7390 2.8
Lowland Sedge—Moss Fen Meadow 51790 4.7 3712 1.4
Lowland Sedge Fen Meadow 34269 3.1 3741 1.4
Lacustrine Moist Bluejoint Meadow 3104 0.3 233 0.1
Lowland Water 58631 5.3 2127 0.8
Riverine Barrens 5213 0.5 1418 0.5
Riverine Moist Low and Tall Willow Shrub 7464 0.7 2137 0.8
Riverine Moist Dwarf Birch—Willow Shrub 5918 0.5 3284 1.2
Riverine Water 3666 0.3 202 0.1
Coastal Barrens 4949 0.4 918 0.3
Coastal Dry Dunegrass Meadow 713 0.1 507 0.2
Coastal Wet Sedge—Grass Meadow 3664 0.3 768 0.3
Coastal Water 12360 1.1 15064 5.7
Human-modifed Barrens 0 0.0 174 0.1
Map Vegetation Type
Dryas Dwarf ShrubTundra 33922 3.1 8856 33
Lichen 24275 2.2 1 0.0
Partially Vegetated 22996 2.1 12103 4.6
Open White Spruce Forest 0 0.0 1018 0.4
Tall and Low Willow Shrub 92569 8.4 25108 9.4
Crowberry Dwarf Shrub Tundra 3018 0.3 1502 0.6
Low Shrub Birch—Ericaceous Shrub 110171 10.0 67826 25.5
Low Shrub Birch—Willow Shrub 17274 1.6 7976 3.0
Low Mixed Shrub-Tussock Tundra 394856 359 79007 29.7
Sedge—Dryas Tundra 232671 21.2 35944 13.5
Bluejoint Meadow 3104 0.3 233 0.1
Lowland Sedge—Moss Bog Meadow 51790 4.7 3712 1.4
Lowland Sedge Bog Meadow 34269 3.1 3741 1.4
Halophytic Sedge—Grass Wet Meadow 3664 0.3 768 0.3
Elymus Meadow 713 0.1 507 0.2
Water 74656 6.8 17394 6.5
Grand Total 1,099,948 100 265869 100
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variation in the 6 spectral bands. When the central
tendencies of the signature vegetation types are
highlighted with ellipses (>90% of the plots of a
vegetation type within an ellipse), the plot reveals
substantial overlap in signature characteristics
among closely related signature vegetation types.
This indicates that after outliers and poor
signatures were removed, slightly different
vegetation types can still have similar spectral
characteristics; thus, spectral characteristics alone
limit the extent to which vegetation types can be
distinguished. In addition, independent
classification of spectral characteristics by cluster
analysis cross-tabulated with the ground data
revealed that for only 65% of the plots, the
signature vegetation was consistently associated
with specific spectral nodes (Appendix 10).
Together, these analyses demonstrate that even
though a specific signature may be unique and
classify correctly with its ground data (high
signature fidelity), signatures that are highly
similar within a cluster can actually be within the
range of the spectral variability of several different
vegetation types. This indicates that if the map was
based solely on spectral characteristics, 35% of the
map potentially could be misclassified.

The cross-tabulation of 29 ecotypes after
rule-based modeling revealed that 71% of the map
pixels were consistent with ground data from 256
plots (Appendix 11). These plots represented the
ground points used to create map signatures for
which a complete data set was available. The
remaining signatures were created from NPS data
without specific point locations, were water
signatures generated without ground reference
data, or were signatures created near ground
reference plots. The cross-tabulation of the 17
mapped vegetation types reveals that 85% of the
map pixels were consistent with the ground data
(Appendix 12). Most of the vegetation errors were
associated with confusion between Dryas Tundra
and Moist Sedge—Dryas Tundra at high elevations
and among the open, low shrub classes at low
elevations. Inconsistencies for ecotypes were due
to similar errors, plus prevalent problems with
differentiating upland and lowland classes based
on model rules. An unknown portion of this error
also was due to spatial registration where the
ground plot did not correspond to the respective
map pixel because of both GPS and satellite

Results

positional error. When the 29 ecotypes were
aggregated into 12 to improve the accuracy of the
map, the consistency between ground and map
determinations was 88% (Appendix 13).

The cross-tabulations of agreement between
the map and ground classification provide an
approximate upper limit of the accuracy of the
map, while the evaluation of the spectral
uniqueness of the mapped vegetation types
provides an approximate lower limit of map
accuracy. Thus, the accuracy of the 17 mapped
vegetation classes, which were derived from both
spectral characteristics and post-classification
modeling to reduce error, is probably between 65%
and 77%. Given this range, we expect the accuracy
to be 70-75%, because substantial effort was made
in modeling out many of the errors associated with
the signature vegetation (e.g., Lowland Sedge Bog
Meadows and Water occurring on north-facing
slopes, Halophytic Sedge—Grass Wet Meadows
occurring inland). The accuracy of the map of 29
ecotypes, which was derived from the signature
vegetation, ecosubsection map, and DEM
modeling is probably in the 60 to 70% range. We
estimate that aggregation of the ecotypes into 12
classes increased the accuracy to around 80%.
Accordingly, the user can select the vegetation,
ecotype, or aggregated ecotype fields linked to the
landcover map depending on their priorities of
partitioning ecological variation (more classes)
versus map accuracy (fewer classes).

RELATIONSHIPS AMONG ECOLOGICAL
COMPONENTS

LANDSCAPE RELATIONSHIPS

Toposequences

The classification of ecotypes (local-scale
ecosystems) was based on the survey of ecological
components (topography, geomorphology, soil,
hydrology, permafrost, and vegetation) along
toposequences. The toposequences display
two-dimensional views of the lithofacies that were
used as the basis for classifying and mapping
geomorphic units (Figures 7-11). Vegetation
classes follow the AVC. Five ecosubsections
within the study area are described below to
present some of the main ecological relationships
within  alkaline  alpine-upland, nonalkaline
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alpine-upland, lowland (coastal plain), riverine,
and coastal physiographic environments.

On a alkaline alpine and upland toposequence
representative of the Goodhope Mountains, which
were formed from carbonate sedimentary rock, the
geomorphology was dominated by Weathered
Bedrock, Hillslope Colluvium, and narrow
Headwater Floodplains (Figure 7). Soils on the
rounded mountains range from extremely rocky,
excessive drained, strongly alkaline soils near the
peaks, to moderately well-drained soils with
moderately thick organic horizons mid-slope, to
saturated organic soils on the toe slope. Vegetation
ranges from partially vegetated areas at the crests,
to Dryas Dwarf Shrub Tundra on the upper slopes,
to Sedge—Dryas Tundra on mid- to lower slopes.
The Headwater Floodplains support Open Tall

Alder—Willow Shrub. Snowbeds, which are
uncommon, support Cassiope Dwarf Shrub
Tundra.

On an alpine and upland toposequence
representative  of the Bendeleben Eastern
Mountains, which were formed from granitic rock,
the geomorphology was dominated by Weathered
Bedrock, Residual Soils, Hillslope Colluvium, and
narrow Headwater Floodplains (Figure 8). Soils on
the rounded mountains vary from extremely rocky,
excessive drained, strongly acidic soils near the
peaks, to moderately well-drained soils with
moderately thick organic horizons mid-slope, to
saturated organic soils on the toe slope. Vegetation
trends from partially vegetated areas at the crests,
to Dryas Dwarf Shrub Tundra on the upper slopes,
to moist Open Low Shrub Birch—Ericaceous Shrub
on mid- to lower slopes. The Headwater
Floodplains support Open Tall Alder Shrub.

On a lowland and wupland toposequence
representative of the Bering Strait Upper Coastal
Plain, the topography is gently undulating with
prominent thermokarst lake basins (Figure 9).
Geomorphic units include Loess over Alluvial and
Marine Deposits, Ice-poor and Ice-rich Thaw
Basins, and Deep and Shallow Lakes. Soils range
from poorly drained silt loam soils in drained
basins, very poorly drained organic soils in drained
basins, to moderately well-drained deposits on
gentle upland slopes. In lake basins, vegetation
trends from Marestail and Fresh Grass Marshes in
shallow water, to Bluejoint Meadows and Open
Low Willow Shrub in recently drained basins, to

Results

Lowland Sedge Fen Meadows, Lowland
Sedge—Moss Fen Meadows and Open Low Shrub
Birch—Willow Shrub in wet, older portions of the
basins. The gently sloping upland areas are
dominated by Open Low Mixed Shrub
Birch—-Tussock Tundra.

On a riverine toposequence representative of
the Bering Strait Lower Floodplains, the
geomorphology ranges from active, high-energy
fluvial regimes associated with the Meander Active
Channel Deposits to lower energy regimes
associated with Meander Inactive Overbank
Deposits and Abandoned Channels (Figure 10). In
this transition, the rate of sedimentation decreases
while accumulation rates for organic matter and ice
increase. On the newly-formed surfaces associated
with the active floodplain, soils along the channels
are well drained and sandy, whereas the soils on
the older portions of the floodplain are poorly
drained and have thick organic accumulations. Soil
nutrients become less available, due to decreasing
cation concentrations (indicated by lower electrical
conductivity) and pH. Over the successional
sequences, ice aggrades both as segregated ice and
as wedge ice, transforming the surface patterns
from nonpatterned to low-centered polygons. The
oldest ice-rich portions of the floodplain
accumulate sufficient ground ice that they become
unstable and susceptible to thermokarst and
formation of thaw lakes. Vegetation responds to
these changing environmental conditions with
changes in both structure and species composition.
Open Tall Willow Shrub, dominated by Salix
alaxensis, occurs on the well-drained, sandy soils.
Behind this zone, Open Low Willow Shrub,
dominated by Salix lanata vichardsonii, S.
planifolia pulchra, and S. niphoclada is found on
moderately  well-drained  soils  with  thin,
interbedded organic layers. Farther back from the
channel, moist Open Low Shrub Birch—Willow
Shrub, dominated by Betula nana and S. planifolia
pulchra, occurs on somewhat poorly drained soils,
while Lowland Sedge—-Moss Fen Meadows,
dominated by Carex aquatilis and Sphagnum, is
found on very poorly drained organic soils.

On a coastal toposequence representative of
the Cape Espenberg Coast, which is dominated by
marine and estuarine processes, the
geomorphology is dominated by Sandy beaches,
Eolian Coastal Sand, Active and Inactive Tidal
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Flats, and Nearshore Water (Figure 11). The
topography is generally flat except for prominent
ridges of dunes, beach ridges and swales that form
parallel features along the coast. The soils on the
Active Tidal Flats are loamy, poorly drained, and
lack organic matter accumulation, while soils on
Inactive Tidal Flats have moderately thick organic
accumulations. Coastal dunes have well drained
sandy soils, while beach ridges formed during
storm surges have excessively drained soils.
Vegetation on these deposits ranged from saline
Halophytic Sedge—Grass Wet Meadow (dominated
by Puccinellia phryganodes), brackish Halophytic
Sedge—Grass Wet Meadow (dominated by Carex
ramenskii), Marestail Marsh (mostly Hippuris
tetraphylla), and Elymus Meadow. On inactive
dunes away from the coast, Crowberry Tundra
predominates.

Hierarchical Organization of Ecological
Components

We developed hierarchical relationships
among ecological components by successively
grouping data from the 231 intensive plots by
physiography, soil texture, geomorphology, slope
position, surface form, drainage, soil chemistry,
vegetation structure, and floristic class. Frequently,
geomorphic units with similar textures or genesis
were grouped (e.g., loamy and organic were
grouped for some lowlands) to reduce the number
of classes. Ecotypes then were derived from these
tabular associations to differentiate sets of
associated characteristics.

Examination of the toposequences and
cross-tabulation of the plot data revealed consistent
associations among soil texture, geomorphic units
that denote depositional environments, slope
position, surface forms related to ice aggradation
and active-layer processes, hydrology, and
vegetation structure (Table 33). The hierarchical
organization of the ecological components reveals
how tightly or loosely the components are linked.
For example, some physiographic settings included
several geomorphic units with similar soil textures.
Similarly, a given vegetation type could occur on
several geomorphic units, depending on surface
form characteristics and hydrology. In contrast,
some geomorphic units (e.g. tidal flats) were
associated only with a few distinct vegetation

types.

BELA-CAKR Landcover Mapping

Results from this analysis were used in
several ways. First, they were used to evaluate how
ecosystems respond to the evolving landscape
comprising a wide variety of geomorphic processes
associated with alpine, upland, lowland, riverine,
and coastal areas (see section on Factors Affecting
Landscape Evolution). Identification of the
changing patterns in geomorphic units and
vegetation, along with analysis of changes in soil

properties, helps identify processes (e.g.,
acidification, sedimentation) that affect the
changing patterns. Second, the hierarchical

relationships developed “from the ground up” were
used to determine the rules for modeling and
restricting the distribution of map classes
differentiated by spectral characteristics “from the
top down” (see Methods for Rule-Based
Modeling). Third, knowledge of ecological
relationships can be used to recode the ecotype
map into a derived map of other ecological
characteristics, such as a soils map or a lichen map
(see Section on Soils).

The contingency table analysis also can be
used to evaluate how well these general
relationships conform to the data set, and how
reliably they can be used to extrapolate trends
across the landscape. During development of the
relationships, 13% of the observations were
excluded from the table because of inconsistencies
among physiography, texture, geomorphology,
drainage, soil chemistry, and vegetation. We
excluded these points because our primary goal
was to identify the most distinct and consistent
trends, not necessarily to include every plot. We
believe that there is an upper limit to our ability to
describe landscape patterns; there will always be a
proportion (in this case 13%) of sites that do not
conform to the overall relationships among factors.
These sites may be transitional (ecotones) or sites
where vegetation and soils have been affected by
historical factors (e.g., changes in water levels,

disturbances) in ways that are not readily
explainable based on current environmental
conditions.

ENVIRONMENTAL CHARACTERISTICS

Single-factor Comparisons by Ecotype

Six environmental parameters
organic-horizon thickness,

(surface
cumulative
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organic-horizon thickness, thaw depth, depth to
groundwater, pH, and electrical conductivity) were
charted for comparison among ecotypes. Not all
ecotypes, however, were included in the charts
because data were insufficient in some cases.

The thickness of the surface organic-horizon
(an indicator of frequency of sedimentation)
showed large differences among sites (Figure 12).
Ecotypes where surface organic accumulations
were absent ranged from areas with severe climate
and soil conditions, such as Alpine Alkaline Dry
Barrens, to areas with frequent sediment
deposition, such as Riverine Moist Barrens and
Riverine Moist Tall Willow Shrub. The thickest
surface organic accumulations were found in
Lowland Sedge Fen Meadow, indicating that
sedimentation events were rare or absent in these
ecotypes.

Depth to rocks (soils with >15% rocks) was
shallowest on alpine ridges and crests (e.g., Alpine
Nonalkaline Dry Dryas Shrub) and in rocky
drainages (Lowland Moist Tall Alder—Willow
Shrub) and deepest in lowland and coastal areas
with fine-grained deposits (e.g. Coastal Barrens,
Lowland Sedge-Moss Fen Meadow) (Figure 12).
Ecotypes with rock depths > 200 cm represent an
estimated minimum depth.

Thaw depths varied four-fold among ecotypes
(Figure 12). While permafrost was found at all
sites with fine-grained soils, the permafrost status
of rocky sites, particularly on south-facing slopes,
is unknown. Values generally were shallowest for
lowland and lacustrine ecotypes and for gently
sloping upland areas with Upland Moist Dwarf
Birch—-Tussock Shrub. Deepest thaw depths were
found in coastal and riverine areas with
well-drained sandy soils and early successional
vegetation (e.g. Coastal Dry Dunegrass Meadow,
Riverine Moist Tall Willow Shrub).

Depth to water above (+) or below (-) the
surface also varied widely among ecotypes, but
relatively little within ecotypes (Figure 13). Mean
water depths were above the soil surface for four
ecotypes, and were greatest for Coastal Water and
Lowland Water. Ecotypes with the deepest water
tables were found in alpine areas with rocky soils
(e.g., Alpine Alkaline Dry Dryas Shrub) and
riverine areas with sandy soils (e.g., Riverine
Moist Tall Alder—Willow Shrub). Values 2100 cm
represent minimum, estimated depths.
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Site pH values varied from 5.0 to 8.3 among
ecotypes (Figure 13). Ecotypes with the lowest
(most acidic) pH values occurred in nonalkaline
alpine and upland areas (e.g., Alpine Nonalkaline
Dry Dryas Shrub, Upland Moist Dwarf
Birch-Tussock Meadow) and in lowland areas
(e.g., Lowland Sedge—Moss Fen Meadow,
Lowland Wet Dwarf Birch—Ericaceous Shrub)
These ecotypes are late successional, where
carbonates have been leached from soils over long
periods. Ecotypes with the highest pH values
tended to occur in alkaline alpine and upland areas
(Alpine Alkaline Dry Dryas Shrub, Upland Moist
Sedge-Dryas Dwarf Shrub) and in riverine and
coastal early successional environments with
frequent mineral sedimentation (e.g., Riverine
Barrens, Coastal Barrens).

Electrical conductivity (EC) measurements
indicated that most ecotypes were nonsaline
(Figure 13). High mean EC values (>800 uS/cm),
indicating brackish or slightly brackish to saline
conditions, were limited to coastal areas (e.g.,
Coastal Saline Wet SedgeGrass Meadow, Coastal
Barrens). EC values were low (<300 uS/cm) in all
other ecotypes. Variability was low within
nonsaline ecotypes and high within saline
ecotypes.

Single-factor Comparisons by Plant Species

To determine how the environmental
parameters measured influenced the distribution of
individual plant and cryptogam species, we
calculated the mean value of each parameter for
locations where 66 common species occurred.
Only sites where a species had >1% cover were
included, to exclude Ilocations with atypical
conditions for that species.

Thickness of the surface organic horizon (an
indication of frequency of sedimentation) was
highly variable both among and within species at
ground sites (Figure 14). Species typically found
on sites with thin organic horizons at the surface
(indicating frequent sedimentation), included
Lathyrus  maritimus,  Epilobium  latifolium,
Deschampsia caespitosa, and Salix alaxensis.
These species typically occur mainly in early
successional ecotypes subject to frequent fluvial or
eolian deposition. Species characteristic of sites
with thick surface organic accumulations included
Carex chordorrhiza, Calla palustris, Salix
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Figure 12. Mean (+ SD) surface organic layer thickness, depth to rock (>15 % coarse fragments), and
thaw depths of ecotypes in Bering Land Bridge National Preserve and Cape Krusenstern
National Monument, northwestern Alaska, 2002-2003.
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Figure 13. Mean (£ SD) pH, electrical conductivity (EC), and water depth (positive when above ground)
of ecotypes in Bering Land Bridge National Preserve and Cape Krusenstern National
Monument, northwestern Alaska, 2002-2003.
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Figure 14. Mean (+ SD) surface organic layer thickness, depth to rock (>15 % coarse fragments), and
thaw depths for plant and cryptogam species in Bering Land Bridge National Preserve and
Cape Krusenstern National Monument, northwestern Alaska, 2002—-2003.
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fuscescens, Carex agquatilis, and Sphagnum
fuscum. These species typically occurred on wet
soils subjected to little or no disturbance.

Depth to rocks also was highly variable
among species and within many species (Figure
14). Species commonly associated with rocks near
the surface include Minuartia arctica, Potentilla
uniflora, Salix phlebophylla, Cladina stellaris, and
Alectoria ochroleuca. Species commonly found on
thick silt or organic deposits include Hippuris
vulgaris, Potentilla egedii, Rumex arcticus, Rubus
chamaemorus, and Sphagnum fuscum.

Thaw depths varied up to four-fold among
species (Figure 14). Species associated with the
greatest thaw depths included Lathyrus maritimus,
Epilobium latifolium, Aster sibiricus, Elymus
arenarius mollis, and Carex subspathacea. These
species typically occur on sandy to loamy soils in
early successional ecotypes. Species generally
found on sites with shallow thaw depths included
Sphagnum  fuscum,  Rubus  chamaemorus,
Eriophorum vaginatum, Ledum decumbens, Pyrola
grandiflora, and Cladina stygia. These species are
characteristic of late successional sites where soils
are acidic, ice-rich, and highly organic.

Depth to water above (+) or below (-) the
surface varied widely both among and within
species (Figure 15). Species associated with the
greatest water depths above the surface were
Hippuris vulgaris, Caltha palustris, and Carex
chordorrhiza, which was not surprising, given that
these species typically grow in standing water
Species that occurred mostly on sites where water
was near the surface included Carex aquatilis,
Carex saxatilis, Pedicularis sudetica, Eriophorum
angustifolium, Dupontia fischeri, Salix fuscescens,
and Aulacomnium palustre. Species associated
with the greatest depths to groundwater included
Salix alaxensis, Salix barclayi, Minuartia arctica,
Dryas octopetala, and Epilobium latifolium. Many
species occurred on sites with a wide range of
water depths, indicating that most tundra plants can
tolerate a wide range of moisture conditions. Depth
to groundwater was highly variable both spatially
and temporally, contributing to high standard
deviations both within and among species.

The pH of groundwater or soil (when
groundwater was not present) was circumneutral
(5.6-7.3) for most species and highly variable
within species (Figure 15). Species associated with
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strongly acidic sites included Ledum decumbens,
Vaccinium vitis-idaea, Eriophorum vaginatum,
Rubus chamaemorus, and Sphagnum fuscum.
Species associated with alkaline (>7.3) soils
included  Saxifraga oppositifolia, Minuartia
arctica, Rhododendron lapponicum, and Dryas
integrifolia. The latter group typically was
associated with soils on carbonate bedrock.
However, most species occurred on sites with a
wide range of pH values, indicating broad
ecological tolerances to pH conditions.

EC wvalues were low for most species,
indicating nonsaline conditions (Figure 15).
Species associated with saline conditions (mean
EC >16,000 uS/cm) included Carex subspathacea,
Puccinellia phryganodes, Chrysanthemum
arcticum, and Potentilla egedii. Species associated
with brackish conditions (EC 800—16000 uS/cm)
included  Carex  ramenskii, = Deschampsia
caespitosa, Salix ovalifolia, Dupontia fischeri,
Elymus arenarius mollis, Rumex arcticus, and
Hippuris  tetraphylla. Their high standard
deviations indicate they tolerated a broad range of
salinity conditions.

VEGETATION COMPOSITION

Ordination of Vegetation

In addition to the single-factor comparisons,
detrended correspondence analysis (DCA) was
used to demonstrate the separation of plots by
species composition. The combined effects of
physiography and various environmental variables
were assessed by superimposing the ecotype class
for each plot on the ordination (Figure 16).

The DCA robustly separated the ecotypes
associated with the various physiographic settings.
Coastal ecosystems showed no similarity (overlap)
with other ecotypes because of the effects of
salinity. Riverine ecotypes are some of the
youngest and most frequently disturbed classes,
and most are early or mid-successional. The wet
lowland ecotypes that are dominated by sedges are
distinctly separate from the ecotypes associated
with the other physiographic settings. Alpine
ecotypes show a transition to upland ecotypes, but
also reveal large differences between alkaline and
nonalkaline substrata.

In contrast to these distinct ecotypes located
around the margins of the DCA plot, there are
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Figure 15. Mean (= SD) pH, electrical conductivity (EC), and water depth (positive when above ground)
for abundant species in Bering Land Bridge National Preserve and Cape Krusenstern
National Monument, northwestern Alaska, 2002-2003.
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groups of ecotypes in the center that show
substantial overlap. The barrens and dryas shrub
ecotypes in the alpine are highly similar in
composition, when separated for alkaline and
nonalkaline soil chemistry, and vary principally in
the amount vegetation present. Upland Moist
Sedge—Dryas Meadow, Lowland Moist Low
Willow Shrub, and Riverine Moist Low Willow
Shrub are similar due to the prevalence of
calciphilic ~ species. Upland Moist Dwarf
Birch—Ericaceous Shrub, Upland Moist Dwarf
Birch-Tussock Shrub, Lowland Wet Dwarf
Birch—Ericaceous Shrub, Lowland Moist Dwarf
Birch—Willow Shrub, and Riverine Moist Dwarf
Birch—Willow Shrub (late successional) are similar
because they are dominated by Betula nana and
acidophilic species.

The axes of the DCA as a whole are
inconsistently related to specific environmental
variables, indicating that non-linear relationships
are affecting species distribution. For example,
Axis 1 suggests a salinity gradient, though
ecotypes in the center have very low EC values,
and Axis 2 suggests a pH gradient though the
nonalkaline and alkaline alpine classes are not far
apart. When considered within physiographic
conditions, gradients among physiographically
related ecotypes are much more distinct. Coastal
ecotypes show a gradient from wet to dry ecotypes
along Axis 1. For alpine and upland ecotypes there
is a strong moisture and pH gradient along Axis 1
and Axis 2, respectively. For riverine ecotypes,
there are similar trends revealing later successional
ecotypes getting wetter, more organic, and more
acidic. While the moisture gradient along Axis 1 is
similar for lowland ecotypes, later successional
stages become less wet due to accumulation of
organics and ground ice which increases the
surface relief.

Sorted Tables

Sorted vegetation tables (Tables 34—36) were
constructed to provide a more direct means of
comparing similarities and differences in the
floristic composition of closely associated ecotypes
(horizontal order) and for evaluating the
association of species along environmental
gradients (vertical order). The tables, however,
only include species that are abundant or of
relatively high frequency within each ecotype.
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SOIL CHARACTERISTICS

Twenty-eight soil types were identified during
field sampling, although four soil types had only
single observations and were therefore excluded
from the analysis and mapping (Table 37). The
most common types observed were Typic Fibristels
(10% of 198 observations), Typic Aquorthel (9%),
Typic Historthel (8%), Typic Hemistel (7%), and
Typic Eutrogelepts (7%). Four of the soils were
Entisols, which includes poorly developed soils
with deep thaw depths. These were associated with
active geomorphic environments. Three soils were
Incepticols, which includes weakly developed soils
with deep thaw depths. These were associated with
rocky alpine and upland environments. The
remaining 17 soils were Gelisols, which had
permafrost near the surface (<1 m). These covered
a broad range of environments.

The soil classification was fairly effective at
partitioning the variability of numerous soil
properties because the classification is based in
large part on thaw depths, depth to water, organic
thickness, and base saturation status as inferred
from pH (Table 38). In a few instances, the use of
the newly revised Gelisol order did not
differentiate some important characteristics,
however. For example, Typic Haploturbels did not
differentiate between alkaline (euic) and acidic
(dysic) soils even though A-horizon development
and species composition on the soils were very
different. In contrast, there was very little
difference in soil properties and vegetation
relationships between Typic Haplorthels and Typic
Haploturbels. There also was little difference in
the properties among Typic Historthels, Typic
Aquiturbels, and Typic Aquorthels.

The cross-tabulation of soils with ecotypes
indicates that most soil types were associated with
2-3 ecotypes (Table 39). Seven soil types were
predominantly restricted to only one ecotype that
was associated with a distinctive geomorphic
environment. In contrast, six soil types were
broadly distributed across five or more ecotypes.
The primary and secondary soil types associated
with each ecotype are highlighted by dark and light
gray boxes, respectively, on Table 38.

These relationships allowed the development
of 15 soil associations and two waterbody types by
combining the soil types that occured in closely
related ecotypes (Table 40). Most soil associations
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Table 34.  Mean cover (%) of the most abundant species in alpine and upland ecotypes. Bolded
numbers represent frequencies >60% within ecotype; blanks indicate species is absent; and 0
indicates cover <0.5%. Italicized fonts denote dominant and differential species used to name
plant association.
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Results

Table 35.  Mean cover (%) of the most abundant species in lowland and lacustrine ecotypes. Bolded
numbers represent frequencies >60% within ecotype; blanks indicate species is absent; and 0
indicates cover <0.5%. Italicized fonts denote dominant and differential species used to name
plant association.
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Taxon
Potamogeton sp. 0
Hippuris vulgaris 9 0
Rumex arcticus 0 0 1
Carex chordorrhiza 7 1
Salix fuscescens 0 0 2 1 1
Eriophorum angustifolium 3 9 5 2 4 0 1 1
Carex aquatilis 3 15 16 15 5 1 2 0 0 1
Vaccinium vitis-idaea 1 11 4 0 1
Ledum decumbens 3 15 5 1 0
Empetrum nigrum 1 10 2 0 0 2 0
Flavocetraria cucullata 0 1 0 1 0 0 0
Aulacomnium turgidum 0 0 5 2 1 0 1 1
Carex bigelowii 1 0 1 5 1 2 3 0
Peltigera aphthosa 0 0 0 1 0 0 0 1 0
Sanionia uncinata 0 0 1 1 1 0 2 2 1 1 0
Polemonium acutiflorum 0 0 0 0 2 4 0 0 1 0 0 0
Poa arctica SL 0 0 1 6 1 1 0 0
Valeriana capitata 0 0 2 4 1 1 1 1 0
Aulacomnium palustre 4 6 8 3 58 5 4 3
Calamagrostis canadensis 0 1 1 28 3 5 3 3 3
Betula nana 0 3 22 24 1 0 1 33 5 0 0
Salix planifolia pulchra 0 1 2 28 1 1 38 13 35 2 11 1 0
Vaccinium uliginosum 2 9 13 2 1 0 10 1 5 1 0
Hylocomium splendens 5 14 20 16 0 20 9 1 0
Equisetum arvense 0 9 26 7 1 1 1 7 0
Petasites frigidus 0 0 0 4 2 11 15 1 7 11 0 3 0
Alnus crispa 1 0 57 0 60 0
Arctagrostis latifolia 0 1 1 0 6 3 33 0 1 0
Tomentypnum nitens 2 4 13 7 11 16 0
Pyrola grandiflora 0 1 0 1 0
Salix reticulata 13 17 1 0 9 3
Salix lanata richardsonii 2 14 1 2 1 12 15
Festuca altaica 1 5 0 1 5 1
Aconitum delphinifolium 0 1 0 0 0 0
Rubus arcticus 0 1 2 1 1 1 0
Salix barclayi 1 1 11 1 1
Saxifraga punctata 0 0 0 0 1 0
Plagiomnium ellipticum 2 0 2 0
Climacium dendroides 0 2 8 1 1
Salix glauca 0 6 7 13 2
Arctostaphylos rubra 0 0 2 3 1 15 5 0
Artemisia tilesii 1 0 2 2 0 2 0
Salix arbusculoides 3 8 4 0
Salix niphoclada 2 6 6 0
Salix alaxensis 7 10 43 2
Festuca rubra 0 0 0 3 1
Potentilla fruticosa 0 1 1 1 2 3 0
Galium boreale 0 3 0 0 15
Aster sibiricus 0 0 0 0 2 0
Caltha palustris 1 1
Dryas integrifolia 2 2 6
Pedicularis verticillata 0 0
Epilobium latifolium 0 2 2
Agropyron macrourum 0
Sphagnum sp. 1 0 61 36 14 5
Sample size 5 11 9 10 8 3 2 10 5 6 3 6 6 10
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Results

Table 36.  Mean cover (%) of the most abundant species in coastal ecotypes. Bolded numbers represent
frequencies >60% within ecotype; blanks indicate species is absent; and 0 indicates cover
<0.5%. Italicized fonts denote dominant and differential species used to name plant
association.
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Puccinellia phryganodes
Carex subspathacea 0
Carex ramenskii 19
Potentilla egedii
Chrysanthemum arcticum
Calamagrostis deschampsioides
Stellaria humifusa

Dupontia fischeri

Cochlearia officinalis

Rumex arcticus

Salix ovalifolia

Deschampsia caespitosa
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Artemisia tilesii 0
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S W a\© N S
N
~

N © — N Wk O

_-O O

(=]
[}

25

(=]
S
>
[

Festuca rubra 0
Bryum sp. 1

Castilleja elegans 0

Salix planifolia pulchra 0
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Bupleurum triradiatum 0

(= Ll S A

[=]
RO OSSO NSO

Flavocetraria cucullata
Empetrum nigrum 0
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Flavocetraria nivalis
Arctostaphylos rubra
Betula nana

Vaccinium vitis-idaea
Vaccinium uliginosum
Thamnolia vermicularis
Rhytidium rugosum
Sphaerophorus globosus
Salix reticulata
Armeria maritima
Oxytropis maydelliana
Trisetum spicatum
Lobaria linita

Sample size 6 7 7 4
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Results

Table 37.  Classification and description of soil types in the in the Bering Land Bridge National Preserve
and Cape Krusenstern National Monument, Alaska.

Soil Class (Subgroup)

Description

ENTISOLS

Oxyaquic Gelorthents
(Eogo)

Typic Gelorthents (Eogt)

Typic Cryopsamments
(Ecpt)

Oxyaquic Cryopsamments
(Epco)

Oxyaquic Cryopsamments,

brackish (Epco, brackish)

INCEPTISOLS ORDER

Typic Eutrogelepts (Iget)

Typic Dystrogelepts (Igdt)

Lithic Dystrogelepts (Igdl)

GELISOLS ORDER
Typic Fibristels (Ghft)

Typic Hemistels, (Ghht)

Fluvaquentic Aquorthels,
(Goaf)

Poorly developed soils lacking mineral horizon development,

Gravelly, excessively or well-drained soils, with deep (>1 m) thaw depths and a fluctuating water
table within 100 cm of the surface. They have no surface or buried organic layers. They resemble the
more widespread Typic Cryopsamment soils, but are composed of gravel mixed with some sand,
rather than pure sand as in Typic Cryopsamments. They are usually barren due to frequent flood
scouring.

Gravelly to sandy, excessively or well-drained soils, with deep (>1 m) thaw depths. Water is absent
within 100 cm of the surface. Organic layer is absent or very thin. They occur on marine beaches,
active coastal dunes, fluvial channel deposits, and active overbank deposits.

Sandy, excessively or well-drained soils with deep (>1 m) thaw depths. They have little or no organic
surface layer, and consist of homogenous sand with few or no dark layers. The soils occur on sand
dunes or, less frequently, on sandy river floodplains.

Sandy, excessively or well-drained soils, with deep (>1 m) thaw depths and a fluctuating water table
within 100 cm of the surface. They occur on sandy channel deposits and on sandy overbank deposits
where the water table fluctuates with river discharge.

Sandy, brackish, excessively or well-drained soils, with deep (>1 m) thaw depths and a fluctuating
water table within 100 cm of the surface. They occur on sandy active beach deposits and low-lying
active coastal dunes. Soil salinity varies from fresh to brackish (>800 uS/cm) due to varying exposure
to tidal fluctuations and storm surge activity.

Weakly developed soils with incipient mineral horizon development.

Rocky, excessively to well-drained, alkaline soils with deep (>1 m) thaw depths. The surface organic
horizon is thin or lacking, but an organic-rich mineral horizon is often present near the surface. Thaw
and water depths are unknown because of the rocky soils. They occur on upper slopes and crests of
rounded mountains comprised of carbonate bedrock, including limestone, dolomite, and marble.

Rocky, excessively or well-drained, acidic soils with deep (>1 m) thaw depths. The surface organic
horizon is thin or lacking, but an organic-rich mineral horizon is often present near the surface. Thaw
and water depths are unknown because of the rocky soils. They occur on upper slopes and crests of
mountains comprised of noncarbonate igneous, metamorphic, volcanic, and sedimentary bedrock.

Rocky, excessively or well-drained, acidic to circumneutral soils, with deep (>1 m) thaw depths.
Bedrock is within 50 cm of the mineral surface. This soil was commonly associated with the
Quaternary lava flows.

Cold soils over permafrost that are affected by cryoturbation or ice segregation.

Very poorly drained soils dominated by a thick layer (80% of the top 50 cm) of poorly decomposed
organic matter. The water table is almost always near the ground surface, and the depth of thaw in
late summer is 25 to 40 cm. These soils occur in areas of low-center polygons or disjunct polygon
rims in drained-lake basins, and on abandoned portions of floodplains.

Very poorly drained soils dominated by a thick layer (80% of the top 50 cm) of moderately
decomposed organic matter. The water table is almost always within 20 cm of the ground surface,
and the depth of thaw in late summer is 25-40 cm. These broadly distributed soils occur on gently
sloping upland areas with colluvium and loess deposits, and on flat low-lying areas in drained-lake

Poorly drained, wet, stratified, loamy, circumneutral soils with shallow thaw depths (<1 m) above
permafrost. Soil layers are not deformed by frost action, which differentiates the Orthel suborder. The
water table with usually 2040 cm below the ground surface and thaw depths are moderately deep
(30-50 cm). The soils occur on inactive floodplain overbank deposits subject to infrequent flooding.
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Results

Table 38.  Mean soil properties of common soil types in the Bering Land Bridge National Preserve and
Cape Kusenstern National Monument, Alaska, 2002—-2003.

Surface Cumul- Depth  Thaw  Depth  Site Site EC  Sample

Organic ative to Depth to pH (uS/em) Size (n)

Layer Organic Rocks (cm)®  Water

Depth Layer (cm)? (cm)

(cm)' Depth in

Top 40 cm
Soil Type (Subgroup Level) (cm)’

Typic Eutrogelepts 1 1 4 -100 8.0 128 14
Bedrock-Rubble 0 0 0 -150 5
Lithic Dystrogelepts 6 6 25 6.5 32 3
Typic Dystrogelepts 2 2 27 -98 5.8 30 10
Typic Haplorthels 3 3 59 50 -64 6.9 102 13
Typic Haploturbels 3 3 50 41 -43 59 90 10
Typic Histoturbels 18 18 147 51 -23 6.4 187 3
Typic Historthels 22 23 160 38 -14 5.6 149 15
Typic Aquiturbels 7 9 146 35 21 59 165 12
Ruptic-histic Aquiturbels 8 8 104 83 -11 7.7 360 2
Typic Aquorthels 9 9 153 37 -14 6.1 148 17
Typic Hemistels 29 29 180 26 -8 5.5 89 14
Typic Fibristels 34 34 171 32 2 5.7 89 19
Typic Historthels, brackish 22 23 200 70 -11 59 8740 2
Fluvaquentic Aquorthels, 4 12 200 67 -12 6.6 13704 8
brackish
Oxyaquic Cryopsamments, 0 0 200 100 -40 7.6 4741 2
brackish
Typic Cryopsamments 1 1 158 120 -115 7.0 102 10
Typic Psammorthels 1 1 144 78 =71 6.3 109 7
Oxyaquic Gelorthents 0 0 0 =71 7.2 130 3
Oxyaquic Cryopsamments 0 0 150 124 -69 7.9 43 5
Typic Gelorthents | 1 12 150 -100 6.7 40 4
Fluventic Haplorthels 3 5 159 46 -74 6.4 191 9
Fluvaquentic Aquorthels 8 10 200 42 -22 6.4 414 5
Fluvaquentic Haplorthels 5 11 23 6.4 140 2

" Surface and cumulative depths measured only down to permafrost table.
2 Measurement of values greater than 100 limited by permafrost so true value, which is usually much deeper, is unknown.
* Thaw depths for rocky soil are unknown and assumed to be >100 cm.
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Lowland Wet Dwarf Birch—Ericaceous
Lowland Moist Sedge—Dryas Meadow
Upland Moist Dwarf Birch—Ericaceous
Shrih

Riverine Moist Low and Tall Willow
Shrih

Shrih
Lowland Moist Dwarf Birch—Willow

Riverine Moist Dwarf Birch-Willow
Shrh

Shrih

Lacustrine Moist Bluejoint Meadow
Upland Moist Sedge—Dryas Meadow
Lowland Moist Tall Alder—Willow
Alpine Nonalkaline Dry Dryas Shrub

Upland Moist Dwarf Birch—Tussock
Shrh

Riverine Barrens

Upland Dry Crowberry Shrub
Coastal Dry Dunegrass Meadow
Coastal Barrens

Coastal Wet Sedge—Grass Meadow
Lowland Sedge Fen Meadow
Lowland Sedge—Moss Fen Meadow
Lowland Moist Low Willow Shrub
Shruh

Upland Moist Low Willow Shrub
Upland Moist Spruce Forest
Alpine Nonalkaline Dry Barrens
Upland Dry Lichen Barrens

Alpine Alkaline Dry Dryas Shrub
Alpine Alkaline Dry Barrens

Total

Results
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Results

Table 40.  Crosswalk of soil associations and their equivalent landtype associations, associated soils,
and associated ecotypes for mapping.
Soil Association Landtype Associated Soils Related Ecotypes
Association
Typic Eutrogelepts-Typic Rocky Dry Typic Eutrogelepts, Typic Alpine Alkaline Dry Barrens; Alpine
Haplorthels, coarse Alkaline Alpine Haplorthels, Typic Haploturbels Alkaline Dry Dryas Shrub
Typic Dystrogelepts- Rocky Dry Typic Dystrogelepts, Bedrock- Alpine Nonalkaline Dry Barrens;
Bedrock, coarse Acidic Upland Rubble, Lithic Dystrogelepts, Alpine Nonalkaline Dry Dryas Shrub;
and Alpine Typic Haplorthels, Typic Upland Dry Lichen Barrens

Typic Dystrogelepts-Typic
Eutrogelepts, coarse-loamy

Typic Haplorthels-Typic
Haploturbels, coarse-
loamy

Typic Historthels-Typic
Aquiturbels, loamy

Typic Aquiturbels-Ruptic-
Histic Aquiturbels, coarse-
loamy

Typic Aquorthels, loamy

Typic Aquorthels, Typic
Historthels, loamy

Typic Hemistels-Typic
Fibristels, dysic

Typic Fibristels, dysic

Fluvaquentic Aquorthels-
Typic Historthels, brackish

Typic Psammorthels,
sandy

Typic Cryopsamments-
Oxyaquic Cryopsam-
ments, sandy-brackish
Oxyaquic Gelorthents-
Oxyaquic Cryopsam-
ments, coarse-sandy

Fluventic Haplorthels-
Typic Gelorthents, loamy

Rocky-Loamy
Moist Circum-
neutral Lowland

Rocky-Loamy
Moist Circum-
neutral Upland

Loamy Moist
Acidic Upland

Rocky-Loamy
Moist Alkaline
Upland

Loamy Moist
Circum. Lowland

Organic-rich
Moist Circum-
neutral Lowland

Organic Wet
Acidic Lowland

Organic Wet
Circum. Lowland

Loamy Wet
Brackish Coast

Sandy Dry
Circum. Upland

Sandy Dry
Brackish Coast

Gravelly-Sandy
Moist Alkaline
Floodplain

Sandy-Loamy
Moist Circum.
Floodplain

Haploturbels
Typic Dystrogelepts, Typic
Eutrogelepts

Typic Haplorthels, Typic
Haploturbels

Typic Haplorthels, Typic
Aquiturbels, Typic Haploturbels,
Typic Historthels

Typic Aquiturbels, Ruptic-histic
Aquiturbels, Typic Aquorthels

Typic Aquorthels

Typic Aquorthels, Typic
Historthels, Typic Hemistels,
Typic Aquiturbels,

Typic Hemistels, Typic Fibristels,
Typic Historthels

Typic Fibristels

Fluvaquentic Aquorthels, brackish;
Typic Historthels, brackish

Typic Psammorthels

Typic Cryopsamments, Oxyaquic
Cryopsamments, brackish

Oxyaquic Gelorthents, Oxyaquic
Cryopsamments

Fluvaquentic Haplorthels, Typic
Gelorthents, Fluvaquentic
Aquorthels, Fluventic Haplorthels

Lowland Moist Tall Alder—Willow
Shrub

Upland Moist Spruce Forest; Upland
Moist Low Willow Shrub

Upland Moist Dwarf Birch—Ericaceous
Shrub; Upland Moist Dwarf Birch—
Tussock Shrub

Upland Moist Sedge—Dryas Meadow

Lowland Moist Sedge—Dryas Meadow;
Lacustrine Moist Bluejoint Meadow

Lowland Moist Dwarf Birch—Willow
Shrub; Lowland Moist Low Willow
Shrub;

Lowland Wet Dwarf Birch—Ericaceous
Shrub; Lowland Sedge—Moss Fen
Meadow

Lowland Sedge Fen Meadow

Coastal Wet Sedge—Grass Meadow

Upland Dry Crowberry Shrub

Coastal Barrens; Coastal Dry
Dunegrass Meadow

Riverine Barrens

Riverine Moist Low and Tall Willow
Shrub; Riverine Moist Dwarf Birch—
Willow Shrub

Human-Modified Barrens, = Human-Modified = Typic Gelorthents Human-Modified Barrens
coarse Barrens
Freshwater Freshwater Lowland Water; Riverine Water
Coastal Water Coastal Water Coastal Water
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were comprised of two or less soil types associated
with two or less ecotypes. For example, the
well-drained, alkaline soils Typic Eutrogelepts and
Typic Haplorthels were predominantly associated
with Alpine Alkaline Dry Barrens and Alpine
Alkaline Dry Dryas Shrub and were therefore
combined into the Typic Eutrogelepts—Typic
Haplorthels, coarse soil association. The creation
of distinctive soil associations in moist upland and
lowland areas was problematic, however, due to
the wide distribution of similar soil types
associated with ecotypes with similar plant species
compostion (Table 38). For example, the highly
similar Typic Haplorthels and Typic Haploturbels,
which were differentiated only by the presence of
cryoturbation features, were broadly distributed
across well-drained, rocky alpine and upland
environments. The highly similar Typic
Historthels, Typic Histoturbels, and Typic
Aquiturbles, which were differentiated by small
differences in organic layer thicknes and presence
of turbation, were broadly distributed across 5-9
ecotypes. These later three soils, however, served
as the primary soils for three differing soil
associations, depending of the frequency of
occurrence of other soil types.

Landtype associations, which are
landscape-level units of the national ecological
land classification (ELC) hierarchy (ECOMAP
1993) also were identified (Table 40). They are
identical in concept to soil associations, except the
nomenclature for the ELC uses terminology that
can be understood by a broader group of users.

Based on the ecotype-soil relationships, soil
association maps were developed by recoding the
individual ecotypes to their respective soil
associations (Figures 17 and 18). This recoding to
soil associations appears to provide a good
approximation of the distribution of soil types.
Note, however, that the ~30-m pixel scale of the
map is not the appropriate scale for soil-association
or landtype-association maps and that a standard
soil-association map would integrate the variability
of soils over broader areas.

Results

FACTORS AFFECTING LANDSCAPE
EVOLUTION AND ECOSYSTEM
DEVELOPMENT

The structure and function of ecosystems are
regulated largely along gradients of energy,
moisture, nutrients, and disturbance. These
gradients are affected by climate, tectonic effects
on physiography, and parent material as controlled
by bedrock geology and geomorphology (Swanson
et al. 1988, ECOMAP 1993, Bailey 1996). Thus,
these large-scale ecosystem components can be
viewed as state factors that affect ecological
organization (Jenny 1941, Van Cleve et al. 1990,
Vitousek 1994, Bailey 1996). Information on how
these landscape components have affected
ecosystem patterns and processes in BELA and
CAKR were synthesized from our results and
relavent literature.

CLIMATE

Climate is a dominant factor affecting
ecosystem distribution (Walters 1979). Long-term
weather stations surrounding BELA and CAKR
reveal strong gradients in temperature and
precipitation. Mean annual air temperature ranged
from —3.2°C at Nome (1949-1999) in the south, to
—6.0°C at Wales (1949-1999), —5.8°C at Kotzebue,
—-5.8°C at Kobuk, —8.1°C at Cape Lisburne, and
—11.8°C at Umiat in the north (WRCC 2001).
Mean annual precipitation ranged from 408 mm at
Nome in the south, to 240 mm at Kotzebue, 241
mm at Kobuk, and 139 mm at Umiat (north). In
addition, there was a west to east precipitation
gradient, with 288 mm occurring at Cape Lisburne
and 291 mm at Wales in the west to 424 mm at
Kobuk in the east. Note, however, that problems
with measuring blowing snow can lead to
underestimation of precipitation in the Arctic. All
stations follow similar seasonal patterns: summers
are short (June through August), winters are long,
and most of the precipitation falls during July,
August, and September. Additionally, there is an
elevational gradient in temperature, with cooler
summers and generally warmer and windier
winters at higher elevations, the latter due to the
pooling of cold air in valleys. Hammond and Yarie
(1996) estimate that growing season temperatures
at high elevations in the western Brooks Range
average 2 to 3°C cooler than in adjacent valley
bottoms. Limited data from Racine (1979) also
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indicate that air temperatures during the summer
are colder in coastal areas compared to inland
areas.

These strong climatic gradients have resulted
in a wide range of ecological responses evident on
the ecotype maps. Most of the area is in the polar
domain, while some portions are included in the
boreal domain (Nowacki et al. 2002). Because of
low summer temperatures, vegetation over most of
the area (polar domain), is dominated by
graminoids, low and dwarf shrubs, mosses, and
lichens. At intermediate elevations in eastern
margins of BELA and CAKR, relatively high
summer temperatures (12—13°C July mean) allow
for the growth of the northwestern-most needleleaf
trees in North America. Consequently, spruce
forests occur only in the eastern portions of the
parks. At higher elevations, summer temperatures
are lower and winds are stronger; as a result alpine
areas frequently are barren or support only a sparse
cover of lichens, mosses, and a few wvascular
species.

The mountains contribute to these gradients
by impeding movement of large-scale air masses.
The Bendeleben and York Mountains appear to
provide a barrier to movement of moist maritime
air masses from the Bering Sea, causing
precipitation to be two times higher on the southern
side of the mountains (Nome) than on the northern
side (Kotzebue).

Climatic conditions also have varied
considerably over time. Stable isotope analysis of
ice cores from Greenland and Antarctica reveal
numerous large, rapid shifts in climate during the
Pleistocene (Bradley 1999). These changes have
resulted in multiple episodes of glaciation,
associated loess deposition, and sea-level
fluctuations (Hopkins 1982), and have been
documented in numerous geomorphic and
paleoecological studies in the Bering Land Bridge
area (Smith 1933, Matthews 1974, McColloch and
Hopkins 1966, Hopkins 1967, Hopkins 1982,
Hamilton and Brigham-Grette 1991, Mann and
Hamilton 1995). During the late Pleistocene,
buried calcareous paleosols in northern BELA
indicate that the climate was cold and dry around
16,000—19,000 years ago and loess deposition was
heavy (Hofle and Ping 1996). During the early
Holocene, white spruce macrofossils, ice-wedge
casts, and buried soils indicate that the climate was
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much warmer 8,300-10,000 years before present
(ybp) (McColloch and Hopkins 1966).

Fossil insect and pollen records (Elias et al.
1999) indicate that during the last interglacial
period (about 130,000 years ybp), the climate in
the Noatak Valley to the east of CAKR was similar
to or slightly warmer than it is today. This
interglacial was followed by a prolonged period of
lower temperatures, when the vegetation was
dominated by herbaceous plants. About
13,000-14,000 years ybp the climate warmed,
probably to conditions similar to those at present,
allowing colonization of the Noatak Valley by
shrubs (and locally trees) over the next few
thousand years (Anderson 1988, FEisner and
Colinvaux 1992, Anderson and Brubaker 1994).
On the basis of beetle fossils assemblages, Elias et
al.  (1999) estimated that mean summer
temperatures were ~2° C below and above current
temperatures during glacial and interglacial
periods, respectively. White spruce fossil remains,
ice-wedge casts, and buried soils indicate that the
climate in northwestern Alaska 8,300—10,000 ybp
was warmer than at present (McColloch and
Hopkins 1966).

More recently, historical records and analyses
of proxy indicators indicate that mean annual
temperatures were substantially (~1° C) lower
during the Little Ice Age (ending around 1850)
than at present, and that temperatures during the
last decade (1990-2000) were the warmest in the
last 400 years (Overpeck et al. 1997). This recent
warming has enhanced tree growth in the Noatak
Valley and allowed some expansion of spruce
forest onto the tundra (Suarez et al. 1999). Future
temperature increases expected as a result of global
warming likely will lead to further expansion of the
forest, but the change is likely to be very slow
because of the topographic barrier presented by the
Brooks Range (Rupp et al. 2001).

OCEANOGRAPHY

The western coast of the BELA abuts the
Bering Strait and the western portion of CAKR
abuts the southern margin of the Chukchi Sea, a
rectangular embayment of the Arctic Ocean. At
Shishmaref, mean high tides reach 0.8 m, and the
highest tidal drift line is only 1.0 m above mean sea
level (amsl) (Naidu and Gardner 1988). At Cape
Espenberg, storm debris extends to 2.3 m amsl
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(Mason et al. 1997). Current direction and thus,
sediment transport, is northward along the coast.
Drifting pack and shorefast ice covers the entire
Chukchi Sea for 7-8 months. Sea depths extend to
only ~80 m in the Bering Strait.

Large fluctuations in sea level, however, have
accompanied the climatic changes described
above. During maximum glaciation in the late
Pleistocene (~18,000 years ybp), sea level fell to
~100 m below current sea level. This drop exposed
a broad land bridge across the Bering continental
shelf (Hopkins 1967). By ~11,000 ybp the land
bridge was again inundated and the migration
corridor for plants and animals, including humans,
closed (Elias et al. 1992). Sea level reached nearly
its present level (within 2—3 m) around 5,000 ybp
(Mason et al. 1995), and sediment transport and
storm events have contributed to the development
of extensive barrier islands, spits, and beach ridge
complexes along the Bering Strait (McCullough
1967, Jordan 1988, Mason and Jordan 1991,
Mason et al. 1997).

Sea level also has been much higher in the
past, and marine transgressions during the
Pleistocene have created the broad coastal plain
across the northern portion of the Seward
Peninsula. The Pelukian transgression during the
last interglacial (isotope stage 5e) occurred
~125,000 ybp and left beach ridge deposits that
outcrop at elevations of 8—10 m above mean sea
level  (Sainsbury 1967, Hamilton and
Bringham-Grette 1991, Brigham-Grette and
Hopkins 1995). The Pelukian transgression is
recorded by a well-defined wave-cut scarp and
marine terrace that can be traced along much of the
coast of the northern Bering Sea and southern
Chukchi Sea (Sainsbury 1967, Hopkins 1973).
During the middle Pleistocene, two marine
transgressions, the Kotzebuan (~175,000 ybp) and
Einahnuhtan (~225,000 ybp) have been described,
although their sea-level history has been difficult to
reconstruct (Hopkins 1967, Hopkins 1973). Sea
level during the later transgression reached a
maximum elevation of ~35 m amsl. Marine
transgressions during the Pliocene may have been
as high as 70 m (Brigham-Grette and Carter 1992).
These transgressions left marine beach and coastal
deposits of silt, sand, and gravel across the coastal
plain. Ancient barrier bars are occasionally
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evident, comprised of well-sorted sand forming
linear ridges (Till et al. 1986).

TECTONIC SETTING AND PHYSIOGRAPHY

BELA is within a moderately active seismic
zone connected to the Brooks Range and is
characterized as having a relatively thin crust,
scattered Quaternary volcanism, and relatively
high heat flow (Thenhaus et al. 1982). The coastal
plain on the northern portion of the Seward
Peninsula is a subsiding basin comprised of
Cenozoic sediments several thousand meters thick
that are crosscut by several east/west faults just
south of Cape Espenberg (Tolson 1987). The
geologic structure and physiography of the region
is dominated by thrust faulting of two different
ages. Probably beginning in the mid-Cretaceous,
Precambrian and Paleozoic rocks were thrust
eastward creating north-trending folds (Sainsbury
1972). Later in the Cretaceous, unmetamorphosed
rocks in the York Mountains moved northward into
their present position. At the end of the Cretaceous,
isolated blocks of granite intruded the thrust sheets
and several normal faults developed. Tertiary
tectonism is responsible for prominent, high-angle
faulting and the volcanic activity in the Imaruk
Basin. Little uplift or subsidence has occurred
during the Holocene, however, and isostatic
rebound is unlikely because the northern coastal
plain was not glaciated during the Pleistocene.

CAKR has been affected by the tectonic
uplifting that produced the Brooks Range.
Uplifting probably began in the mid-Jurassic and
was active into the Cretaceous within the area
(Moore et al. 1994). This uplifting occurred when a
thick piece of the earth’s crust that now composes
most of the Brooks Range, known as the Arctic
Alaska Terrane, collided with and then fused with
other terranes to the south (Mull 1982, Box 1985,
Mayfield et al. 1983, Karl and Long 1990, Moore
1992). The quiet-water, marine sedimentary rocks
of the Arctic Alaska Terrane were initially forced
southward (subducted) beneath a section of
oceanic crust known as the Angayucham Terrane,
then uplifted and eroded. As a result, bedrock in
CAKR consists mostly of sedimentary rock,
including a substantial amount of carbonate rock.

These tectonic forces and the resulting
physiography in the parks have exerted strong
influences on ecosystem distribution and



successional development through their effects on
regional climate (Hammon and Yarie 1996, Van
Cleve et al. 1990), microclimate and drainage
(Bailey 1996), and plant migration and life-history
patterns (Suarez et al. 1999, Rupp et al. 2001). In
addition, lower temperatures at higher elevations
create conditions for glacier expansion into
low-lying areas (Péwé 1975), resulting in
substantial alteration of surficial materials that
form the substrate for supporting plant growth.

BEDROCK GEOLOGY

The bedrock geology within BELA and
CAKR is highly complex and includes a wide
variety of sedimentary, metamorphic, volcanic, and
intrusive rocks (Sainsbury 1972, Hudson 1977,
Beikman 1980, Nelson and Nelson 1982, Curtis et
al. 1984, Ellersieck et al. 1984, Mayfield et al.
1984, Till et al. 1986, Karl et al. 1989, Till and
Dumoulin 1994, Moore et al. 1994). This
complexity and interspersion of rock types greatly
influenced the diverse range of high-elevation
ecotypes identified in this study. In addition,
vegetation composition varies greatly among areas
with different bedrock types, due to differences in
soil pH and potential phytotoxic effects of soluble
metals (described below). Acidic soils, typically
associated with noncarbonate sedimentary and
metamorphic rocks, usually are dominated by acid
tolerant plants such as Betula nana, Dryas
octopetala, Empetrum  nigrum, Eriophorum
vaginatum, Ledum decumbens, Rubus
chamaemorus, Salix planifolia pulchra, Sphagnum
spp., and Vaccinium uliginosum (Hanson 1953,
Young 1974, Walker et al. 1994). In contrast,
common plants on alkaline soils typically include
Dryas integrifolia, Equisetum scirpoides, Lupinus
arcticus, Parrya nudicaulis, Salix arctica, S. lanata

richardsonii, and S. reticulata (Young 1974,
Walker et al. 1994). Some of the principal
differences among carbonate, noncarbonate,

felsic-intrusive, and mafic extrusive (volcanic)
rocks, and their influence on soil and vegetation,
are described below.

Carbonate or calcareous rocks, such as
limestone, dolostone, marble, and calcareous
schists are common in the Baird and Delong
Mountains (Dumoulin and Harris 1987, Moore et
al. 1994). The relatively high pH and abundance of
calcium in the alkaline soils formed by these rocks
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result in reduced availability of phosphorus and
poor absorption and utilization of phosphorus by
plants (Bohn et al. 1985). These nutrient
availability problems may explain the lower plant
cover apparent on satellite imagery for carbonate
rock regions in CAKR and BELA. Alkaline soils
also tend to be rich in humus, are often associated
with more active cryoturbation, and tend to have
deeper active layers (Ping et al. 1998).

Noncarbonate sedimentary (mostly shale,
chert, sandstone, and conglomerate) and
metamorphic (mostly schist) rocks are the most
common rock types throughout the Brooks Range
and the study area (Moore et al. 1994, Brosgé et al.
1983). Topography generally is gentler on shales
than other rock types in BELA and CAKR.
Because of reduced carbonate and calcium
concentrations in the soil, the soils tend to be
strongly acidic. Vegetation cover is distinctly
greater on these rocks than either carbonate
sedimentary rocks or ultramafic igneous rocks.

Felsic intrusive igneous rocks occur in the
Bendeleben and Darby Mountains and in other
isolated locations, such as the upper Serpentine
River and Inmachuk River areas. These granitic
rocks are dominated by light-colored minerals,
such as quartz, alkali feldspars (orthoclase), and
muscovite mica, and are rich in aluminum silicates,
with little to no calcium, magnesium, and iron. The
high aluminum and low calcium—magnesium
content contributes to development of strongly
acidic soils and high soluble aluminum
concentrations. The elevated aluminum, in turn,
can lead to plant growth problems because root
growth can be stopped by Al concentrations as low
as 1 mg/l (Bohn et al. 1985). Phosphorus
predominantly is fixed as aluminum and iron
phosphates in the acid soils but is still more
available than in alkaline soils. To reduce
aluminum toxicity, many plants generate organic
acids, such as tannins, that act as chelating agents
in the rhizosphere for protection (Rendig and
Taylor 1989). Thus, ericaceous plants, which are
better adapted to these conditions, tend to
dominate.

Mafic volcanic rocks are prevalent in the
Imuruk Plateau and around the Devil Mountain
Lakes. The Imuruk Plateau basically was formed
from basaltic lava flows of Tertiary and Quaternary
age (Till et al. 1986). While the Tertiary flows are
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mostly covered by eolian silt and colluvium, the
Lost Jim and Gosling lava flows of Quaternary age
are mostly barren. Farther north, the shield
volcanoes that form Devil Mountain occur at the
northern limit of late Cenozoic volcanism in
Alaska (Hopkins 1988). Explosive eruptions
during the last 200,000 years have created a large
region of basaltic ash, massive pyroclastic flows,
and explosion breccia (Begét et al. 1996). These
barren areas tend to be dominated by fruticose and
crustose lichens.

GEOMORPHOLOGY

Despite its strong influence on
geomorphology elsewhere in Alaska and North
America, the Pleistocene glaciations had only a
slight affect on the geomorphology of BELA and
CAKR. Glaciers extended into northern CAKR
from source areas in the surrounding mountains
during the early and middle Pleistocene, but did
not cover the valley entirely during the latest
(Wisconsin) glacial period (Smith 1912, Péwé
1975, Hamilton 1994, Hamilton, 2001). Glacial
moraines deposited in pre-Wisconsin glaciations
have been modified greatly by subsequent
thermokarst and gelifluction, so that the moraine
morphology is now indistinct. Glaciations during
the middle to late Pleistocene also covered the
Bendeleben, Darby, western York, and Kiwalik
mountains, but effects within BELA are limited
(Matthews 1974, Hopkins et al. 1983, Kaufman
and Hopkins 1986, Kaufman et al. 1991). The
Nome River glaciation (~280,000-580,000 ybp)
extended into the Bendeleben Northern Foothills,
but little can be found in the fossil record regarding
ecosystem development on the glacial deposits.
The many cirque lakes present in the Bendeleben
Mountains originated from this glacial activity.

Eolian activity during dry, full glacial periods
has deposited thick beds of eolian silt (loess) over
much of the northern Seward Peninsula (Mathews
1974, Hopkins 1982). Near Imuruk Lake, eolian
deposits up to 6-m thick have been observed
(Holowaychuk and Smeck 1979). In contrast, late
Pleistocene eolian deposits that occur on top of
volcanic ash deposited ~17,500 ybp are only ~0.5
m thick (Holowaychuk and Smeck 1979). Much of
the silt probably blew off glaciofluvial outwash
plains associated with the Illinoian glaciation,
which extended as far west as the terminal moraine
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now forming the Baldwin Peninsula (Matthews
1974). Loess accumulation during the Wisconsin
glaciation (maximum at ~18,000 ybp) probably
was much less because outwash streams were
blocked by the Baldwin Peninsula. Chemical
analysis of loess in northern BELA buried during
the late Pleistocene (around 16,000-19,000 ybp)
indicates it remained calcareous throughout the
profile because the climate was cold and dry (Hofle
and Ping 1996). While the frozen loess beneath the
active layer of modern soils tends to remain
alkaline, surface organic horizons usually are
strongly acidic on the Imuruk Plateau and northern
BELA (Holowaychuk and Smeck 1979, Hofle and
Ping 1996), presumably due to leaching and
paludification under a wetter climatic regime.

The long, gentle slopes of the hills and low
mountains in the parks probably were formed, and
continue to be modified, by gelifluction. This is the
movement of saturated soil material downslope
over permafrost (Washburn 1973). Gelifluction
lobes are even visible on many rather steep,
vegetated mountain slopes in both BELA and
CAKR.

Alluvial processes in narrow mountain and
broad lowland valleys in the parks have created a
dynamic landscape characterized by active erosion
and deposition. Channel migration erodes and
recycles surficial deposits, while deposition
follows a predictable sequence from gravelly
deposits in active channels, to sandy active
floodplains adjacent to the active channel, to
peat-covered loamy soils on inactive floodplains
(Ugolini and Walters 1974, Binkley et al. 1997,
Jorgenson et al. 1998). In the latter stages of this
sequence, ice-rich permafrost aggrades in the silty
cover alluvium and greatly modifies the surface
with ice-wedge polygons. In higher gradient
streams in the mountains, bedrock control and
heavy bedload result in confined headwaters and
gravelly braided floodplains. On lower gradient
streams in the lowlands, sandy deposits with
meandering morphology are common. The
floodplains provide connectivity between regions,
because water is a conduit for the movement of
sediments and nutrients, as well as fish,
invertebrates, and plant materials.

Permafrost distribution is nearly continuous
throughout the region because of low air
temperatures (Brown et al. 1997) and is >100m



thick (Hopkins 1988). Permaftrost in the lowlands
generally is extremely ice-rich due to the thick
loess deposits and long period of development,
whereas upland areas underlain by bedrock have
little ground ice as indicated by the lack of
thermokarst features. Most of the massive ice that
has accumulated in the lowlands appears to have
developed during the mid-late Pleistocene and is in
the form of massive ice sheets similar to the
“paloma” described in Russia (Yuri Shur, pers.
comm.). Ice-wedge development, which occurs in
areas where mean annual air temperatures have
been <-6°C (Péw¢ 1975) during the Holocene, also
has contributed to the ice-rich permafrost. With the
onset of a warmer and moister climate during the
early Holocene, thermokarst of the ice-rich terrain
has resulted in an abundance of thaw lakes (Heiser
and Hopkins 1995). On the coastal plain, thaw
basins are up to 25-m deep, indicating the ground
ice volume is extremely high (Hopkins and Kidd
1988, Kidd 1990). Collapse of permafrost into
thaw lakes, and subsequent aggradation of ground
ice in exposed lacustrine sediments has lead to a
“thaw-lake cycle” and occasional development of
ice-cored mounds or “pingos” (Hopkins 1949).

Permafrost also greatly affects ecosystem
development by altering soil processes. First,
permafrost forms an impermeable layer beneath
the active layer, causing the surface soils to
become saturated in low-lying areas and on gentle
slopes (Ford and Bedford 1987). Soil saturation, in
turn, reduces soil oxygen and microbial
decomposition and thereby increases organic
matter accumulation (Hofle et al. 1998). Second,
the impermeable layer eliminates subsurface
leaching, so that solute removal is slowed down
and occurs laterally. This lateral movement through
the active layer creates distinct branching pattern
of “water-tracks” on slopes and enhances plant
growth in the drainages (Walker et al. 1989, Kane
et al. 1992). Finally, freezing and thawing
processes associated with permafrost contribute to
cryoturbation (mixing of soil horizons) and
development of patterned ground features, such as
frost boils and ice-wedge polygons, which provide
a range of wet and moist microsites. These
processes all alter the composition of vegetation
that can grow on the cold, saturated soils.

SUMMARY AND CONCLUSIONS

FIRE

Although fire is not considered to be an
important disturbance factor in tundra ecosystems
due to the lack of fuel (Patterson and Dennis 1981),
periodic summer droughts and thunderstorms have
produced several major fires in BELA during the
last several decades (Melchior 1979, Wein 1976,
Racine 1981, and Racine et al. 1983). Most fires
have occurred in the eastern portion of the Seward
Peninsula, but several incidences also have
occurred near the Kuzitrin River, and to a lesser
extent near Imuruk Lake. Fires are notably absent
from the coastal plain region. While the effects of
fire are variable in this landscape, they can be
locally important since they increase the depth of
the active layer and initiate permafrost degradation
(Racine 1981, Racine et al. 1983).

SUMMARY AND CONCLUSIONS

This report presents the results of a landcover
mapping and ecological land survey (ELS) effort
that inventoried, classified, and mapped
ecosystems in the Bering Land Bridge National
Preserve and the Cape Krusenstern National
Monument. By analyzing the dynamic physical
processes associated with coastal, riverine, coastal
plain, and hillside environments, and the
abundance and distribution of their diverse
ecological resources, this study contributes to
ecosystem management in national parklands in
northwestern Alaska.

Field surveys at 231 intensive plots during
July 2002 and 2003 collected information on the
geomorphic, topographic, hydrologic, pedologic,
and vegetative characteristics of ecosystems across
the entire range of environmental gradients across
the two parks. An additional 257 verification plots
were surveyed to obtain data on vegetation
structure and dominant species for use as ground
reference plots for mapping. Individual ecological
components (e.g., geomorphic unit, vegetation
type) were determined using standard classification
schemes for Alaska, but modified when necessary
to differentiate unique characteristics in the study
area. Thirty-one plant associations were developed
through multivariate classification techniques. The
hierarchical relationships among ecological
components were used to derive 33 ecotypes
(local-scale ecosystems) that best partition the
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SUMMARY AND CONCLUSIONS

variation in ecological characteristics across the
entire range of aquatic and terrestrial
environments.

Mapping was based on the classification of
spectral characteristics of three Landsat scenes that
covered the area and modeling the physiography
associated with ecosubsection (major
physiographic and geologic regions) maps and
digital elevation models. A spectral database was
developed that integrated the  spectral,
environmental, and vegetative characteristics for
389 ground plots and was used as part of a
supervised classification to classify the area into 18
signature vegetation types. Rule-based modeling
using the supervised classifcation, ecosubsection
maps ,and digital elevations models was used to
reclassify signature vegetation into 29 ecotypes.
Four ecotypes were aggregated into other classes
because they could not be mapped separately. The
most abundant ecotypes within the park boundaries
include Upland Moist Dwarf Birch—Ericaceous
Shrub, Upland Moist Dwarf Birch—Tussock Shrub,
Upland Moist Sedge—Dryas Meadow, Lowand
Moist Sedge-Dryas Meadow, and Lowland
Sedge—Moss Fen Meadow.

Multiple  environmental site  factors
contributed to the distribution of ecotypes and their
associated plant species, and there were large
differences among ecotypes. Mean surface
organic-horizon thickness, an indicator of land
surface age and anaerobic soil conditions and
disturbance, ranged from 0 cm in Coastal and
Riverine Barrens to 40 cm in Lowland Sedge Fen
Meadow. Mean depth to rock, an indicator of
surficial deposit depth and drainage, ranged from O
cm in Alpine Alkaline Dry Barrens to >200 cm in
numerous ecotypes that occurred on thick eolian or
marine surficial deposits. Permafrost was present
in all terrestrial ecotypes and mean thaw depths
ranged from 26 cm in Moist Dwarf Birch—Tussock
Shrub to 130 cm in Riverine Moist Tall
Alder—Willow Shrub. Mean depth of water
(negative when below ground), ranged from >-2 m
in Riverine Moist Tall Alder-Willow Shrub to >1 m
in Coastal Water. Mean pH, which affects nutrient
availability and ion exchange, ranged from 5.0 in
Moist Dwarf Birch—Tussock Shrub to 8.2 in Alpine
Alkaline Dry Barrens. Mean electrical conductivity
(EC), important for osmotic regulation of plants
and animals, ranged from 20 pS/cm in Alpine
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Nonalkaline Dry Barrens to 22,430 uS/cm in
Coastal Saline Wet Sedge—Grass Meadow.

Soils described at 198 plots were classified
into 24 soil types for mapping and analysis. The
most common types observed were Typic Fibristels
(10% of 198 observations), Typic Aquorthel (9%),
Typic Historthel (8%), Typic Hemistel (7%), and
Typic Eutrogelepts (7%). The classification was
fairly effective at partitioning the variability of
numerous soil properties, including organic-layer
thickness, depth to rocks, thaw depths, depth to
water, pH, and EC. Cross-tabulation of soils with
the ecotypes assigned for each plot indicates that
most soil types were associated with 2—3 ecotypes.
These relationships allowed the development of 15
soil associations and two waterbody types by
combining the soil types that occured in closely
related ecotypes. Based on the ecotype-soil
relationships, soil association maps were
developed by recoding the individual ecotypes to
their respective soil associations.

Ecotype distribution also was greatly affected
by landscape-level factors. Strong north-south and
east-west climatic gradients have affected the
forest-tundra ecotone and modes of permafrost
development and degradation. Oceanographic
conditions and Quaternary sea-level changes have
resulted in the occurrence of salt-affected ecotypes
along the coast and the prevalence of lowland
ecotypes on the coastal plain. Tectonics and
regional mountain building have created barriers to
atmospheric movement and topographic climate
gradients. Carbonate sedimentary and felsic
intrusive bedrock greatly affects soil pH and
nutrient  status. Geomorphic  environments
associated with sediment erosion and deposition
create a wide range of soil conditions and
disturbance regimes. Permafrost acts as a barrier to
subsurface drainage and the varying volumes of
ground ice result in varying degrees of permafrost
degradation. Finally, fires occasionally occur in
ecotypes that have developed sufficient evergreen
vegetation, litter and woody fuel.

Three main benefits are derived from an
ecological land survey approach to understanding
landscape processes and their influence on
ecosystem functions. First, it analyzes landscapes
as ecological systems with functionally related
parts and recognizes the importance that
geomorphic and hydrologic processes have on



disturbance regimes, the flow of energy and
material, and ecosystem development. This
hierarchical  approach, which incorporates
numerous ecological components into ecotypes
with co-varying properties, allows users to
partition the variability of a wide range of
ecological characteristics. Second, developing a
spectral database that integrates the spectral,
physical, and floristic information for use in
satellite image processing facilitates the analysis of
numerous environmental characteristics across the
landscape. Finally, this linkage of ecological
characteristics within a spatial database improves
our ability to predict the response of ecosystems to
human impacts and facilitates the production of
thematic maps for resource management
applications and analyses.
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Appendix 3. Data file listing of environmental characteristics intensive ground reference plots in the
Bering Land Bridge National Preserve and Cape Krusenstern National Monument,
northwestern Alaska, 2002-2003.

Z =Y Q g o

S 2% ¢ g2 % . 2 2 o & g

T 2392 23 0 4,9 & § = E =

£ § 25 8 E 232 £ 1 EF 2 E i o2 g

s §2:5%Z ¥ fF 58 323 ¢ £ §F 3 F %
. = = s = = = = 7 - @] <] B <3 e = =g % = . .
Site ID 2 5 3% 3 5 &8 23 <& &2 &8 & & s & =z @A SitChemistry
BELA T01 01 Np 100y F A nd nd u nd nd nd nd nd 8 130 Alkaline
BELA TO01 02 Nse 47n W M nd 50 n a 0 0 N S nd 97 0 7 50  Circumneutral
BELA T01 03 Nse -150n W M nd nd n a 0 0 S S nd 1120 6 50  Circumneutral
BELA T01 04 Nse -114n W M a a n a 0 0 N N nd 114 0 6 50  Circumneutral
BELA TO01 05 Nse S0n W M 12 52 n a 6 6 L L 0 52 0 6 60  Circumneutral
BELA TOl 06 Nsa 26 n Ps M 25 a n p 6 6 L L 0 25 0 6 80  Circumneutral
BELA_T01_07 Nsa 8y P W 25 a y a 25 25 (¢} O 0 25 0 5 50 Acidic
BELA T02 01 Nsa 0Oy Pv W a a y a 25 25 O O 0 25 0 5 40 Acidic
BELA T02 02 Nsa y W M a a y a 5 5 L L 0 25 0 6 50  Circumneutral
BELA_T02_03 Np 40y F A nd nd u nd nd nd nd nd 6 80  Circumneutral
BELA_T02 04 Np 4y Pv W a a y a 32 32 (0] (@] 0 32 0 6 40  Circumneutral
BELA_T02_05 Nsa 17y Pv W a a y a 6 6 L L 0 26 0 5 60  Acidic
BELA_T02_06 Nsa -4y Ps W a a y a 10 10 L L 0 16 0 5 380  Acidic
BELA_T02_07 Nse S5y Pv W a a y a 31 31 (¢} O 0 31 0 5 70 Acidic
BELA_T02_08 Nsa 0Oy Pv W a a y a 18 18 L 0 230 5 220 Acidic
BELA T02 09 Nsp 5y Pv W a a y a 41 41 (0] (0] 1] 41 0 6 100  Circumneutral
BELA_T03 02 U n W M a a n a 3 3 R R 0 0 7 30  Circumneutral
BELA T03 04 U n Ps M 12 a y a 12 12 L L 0 0 6 47  Circumneutral
BELA T04 01 U n W M nd nd n a 2 2 L L 0 60 0 6 130 Circumneutral
BELA T04 02 U n W M nd nd n p 3 4 L L 0 95 0 7 120  Circumneutral
BELA _T04 03 U -6y Ps M nd nd n a 1313 L L 0 36 0 7 40  Circumneutral
BELA T04 04 U n W M 35 nd n p 3 3 L L 0 50 0 6 50  Circumneutral
BELA T04 05 Nsa -5y Ps M 29 29 y p 2 2 L L 0 29 0 6 20  Circumneutral
BELA _T04 06 U n Ps M nd nd n p 7 7 L L 0 30 0 7 190  Circumneutral
BELA T04 07 U n W M nd nd n a 3 3 R R 0 0 5 70  Acidic
BELA T04 08 U n E D nd nd n a 2 2 RE RE 0 0 8 180  Alkaline
BELA T05 01 U S2n W M a a n p 0 0 S S nd 52 15 5 20  Acidic
BELA _T05_ 02 Nsa -2y Ps W a a n p 0 0 R R nd 60 2 6 10 Circumneutral
BELA T05 04 U 25n W M a a n a 1 1 R R nd 25 0 5 40  Acidic
BELA T06 01 U nd W M 10 nd n a 4 4 L L 0 60 0 5 10 Acidic
BELA_T06_02 U nd Es M nd nd n a 3 3 Re RE 0 0 6 30  Circumneutral
BELA _T06 04 Tr 30y F A nd nd n a nd nd 0 0 7 10 Circumneutral
BELA T06 05 U nd Es M nd nd n p 2 2 R R 0 25 5 20 Acidic
BELA T06 06 Nsa -l6y Ps W nd nd y op 27 27 (¢} O 0 27 0 5 20 Acidic
BELA T06 07 U nd W M nd nd n p 3 3 L L 0 30 15 5 10 Acidic
BELA T06 08 U nd W M nd nd n p 4 4 L L 0 0 5 40 Acidic
BELA T06 10 U nd Es D nd nd n p 1 1 R R 0 0 5 10 Acidic
BELA T07a 0 U 20n W M 7 7 n a 4 35 R R 17 0 7 20  Circumneutral
BELA_T08 01 U -50n E D a a n a 0 0 RE RE 0 0 8 50  Alkaline
BELA_T08 02 U 35 n W M a a n a 3 3 R R 30 35 2 7 280  Alkaline
BELA T08 03 U 40n W M a a n a 6 6 R R nd 40 10 7 280  Alkaline
BELA_T08 04 U 30n W M a a n a 0 0 R R nd 30 0 8 100 Alkaline
BELA T08 05 U “40n W M a a n a 4 4 L L nd 40 0 7 140  Circumneutral
BELA T09 02 U n W M a a n a 0 0 R R 0 nd 8 120 Alkaline
BELA_T09 03 U n W M 16 a n a 16 16 L L 0 nd 8 110 Alkaline
BELA_T09 04 W n W M nd nd n a 3 3 R R nd nd 8 150  Alkaline
BELA _T09 05 Nsa 40y W M 23 nd y a 23 23 L (@] nd nd 7 640  Circumneutral
BELA T10 01 Np 30y F A a a n a 0 0 nd nd nd nd 8 210  Alkaline
BELA T10 02 Ni n Es M nd nd n a RE RE nd 0 8 50  Alkaline
BELA T10 03 Ni n Es M nd nd n a 0 0 RE RE 0 0 8 90  Alkaline
BELA TI10 04 Nse 48y W M 28 nd n a 2 4 L L 0 55 0 7 930  Circumneutral
BELA TI10 05 Nsa nd Ps M nd nd n p 5 17 L L 0 22 0 7 170 Circumneutral
BELA _TI10_06 Nsa -1y Pv W nd nd n p 10 28 L o 0 28 0 7 140  Circumneutral
BELA T10 07 U 20y Ps M nd nd n p 16 16 L L 0 22 0 5 40  Acidic
BELA TI10 08 Nse n Ps M 25 nd n p 4 4 L L 0 40 0 7 240  Circumneutral
BELA T11 01 U -50n E D 20 20 n a 0 0 RE RE 0 20 0 8 110 Alkaline
BELA T11 02 U -S0n E D 30 30 n a 0 0 RE RE 0 30 0 8 80  Alkaline
BELA TI1 03 Nsa -8y Ps M 15 40 y p 2 2 L L 0 76 3 7 410  Alkaline
BELA T11 04 Nsa 28y W M 10 30 y a 5 5 L L 0 74 0 8 200  Alkaline
BELA TI11. 05 U 45 n W M 19 54 n a 7 9 S S 0 54 0 7 220  Circumneutral
BELA TI11 06 Np IS5y F A nd nd u nd nd nd nd nd 8 340  Alkaline
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Appendix 3.

Site ID

BELA TI11 07
BELA T11 08
BELA_T11 09
BELA T12 01
BELA TI12 02
BELA T12 03
BELA TI12 04
BELA_TI12 05
BELA TI12 06
BELA TI12 07
BELA T13 01
BELA TI13 03
BELA TI13 04
BELA T13 05
BELA TI13 06
BELA T13 07
BELA T13 08
BELA T14 01
BELA T14 02
BELA T14 03
BELA T14 04
BELA Tl14 05
BELA T14 06
BELA T14 07
BELA_T14 08
BELA T14 09
BELA TI14 10
BELA Tl14 11
BELA T14 12
BELA T14 13
BELA T16 01
BELA TI16 02
BELA T16 03
BELA TI16 04
BELA T16 05
BELA T17 01
BELA T17 02
BELA T17 03
BELA T17 04
BELA T17 05
BELA T17 06
BELA T17 07
BELA T17 08
BELA T17 09
BELA T18 01
BELA TI8 02
BELA TI18 03
BELA TI8 04
BELA TI18 05
BELA TI18 06
BELA TI8 07
BELA TI18 08
BELA TI8 09
BELA T19 01
BELA T19 02
BELA_T19 03
BELA T19 04
BELA T19 05
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BELA T21 01
BELA_T21 02
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Circumneutral
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Circumneutral
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Appendix 3. Continued.
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] x - § 3 2 8 8 @2 = O & E 7 &= s ¥ 2 & . .
Site ID X 2 8% 3 B B &34 82 E E E B E T B SitChemity
BELA_T21 03 U 35 n Es M a a n a 0 0 S S 0 9 0 7 5070  Brackish
BELA T21 04 Nsa -1y Pv W a a y a 1 7 S S 0 60 0 6 6100  Brackish
BELA_T21_05 U 50 n Es D a a n a 0 0 S S 0 50 0 8 20 Brackish
BELA_T21 06 Nsa 0Oy Pv W a a y a 18 18 S S 0 62 0 6 590  Brackish
BELA _T21 07 Nsa 0Oy Pv W a a y a 3 6 S N 0 78 0 7 2000 Brackish
BELA _T21 08 U 40n W M a a y a 0 2 S N 0 8 0 7 150  Circumneutral
BELA_T21 09 U -50n E D a a n a 1 1 S S 0 8 0 6 40  Circumneutral
BELA _T21 10 40y F A nd nd u nd nd nd nd 40 0 7 160  Circumneutral
CAKR TO01 01 Nsa 28y Ps M 27 >38 y p 27 27 L (0] nd 30 0 7 410  Circumneutral
CAKR T01 02 U 75n W M >50 >50 n a 4 4 L L 13 0 7 130 Circumneutral
CAKR T01 03 U -100 n  Es D >50 >50 n a 2 2 R R 0 1 8 149 Alkaline
CAKR T01 04 U -150 n E D >25 >25 n  a 0 0 RE RE 0 0 9 120 Alkaline
CAKR TO01 05 Nsa 8y Ps M 17 >48 y a 17 18 L L 7 76 0 7 250  Circumneutral
CAKR_T02 01 Nsa 30y Ps M a a n a 16 16 R R 0 60 0 8 370  Alkaline
CAKR T02 02 U -100n W M a a n a 5 5 R R 0 0 8 170 Alkaline
CAKR T02 03 U -100n W M 20 a n a 2 2 R R 0 0.1 8 170  Alkaline
CAKR_T02 04 U -150 n  Es D a a n a 0 0 RE RE 0 0 8 160  Alkaline
CAKR_T02 05 U -150 n  Es D a a n a 0 0 RE RE 0 0 8 80  Alkaline
CAKR T02 06 U -150n W M a a n a 1 1 RE RE 0 0 8 150  Alkaline
CAKR_T02 07 Nsa 20y Ps M 20 nd s a 9 9 R R 0 80 0 7 370  Alkaline
CAKR T04 01 U -100 n E D a a n a 0 0 S S 0 125 0 7 160  Brackish
CAKR_T04 02 Nsa -6y P W a a y a 24 24 S O 0 240 5 150  Acidic
CAKR_T04_03 Ti Sy Pv W a 21 'y a 18 19 L L 0 75 0 6 8480  Brackish
CAKR_T04_04 Ni -ly Pv W 25 25 y a 25 25 L O 0 125 0 6 17070  Saline
CAKR_T04_ 05 Np 200y F A a a u nd nd nd nd nd 9 10800  Brackish
CAKR_T04 06 Np 200 nd F A nd nd u nd nd nd nd nd 7 240  Brackish
CAKR _T04 07 Nsa -l6y P W a 26 y a 26 26 L (¢} 0 65 0 6 9000  Brackish
CAKR T05 00 T -75 n E m >10 >10 n a 0 0 S S 0 150 0 Saline
CAKR _T05 01 Ti -150 n E d >50 >50 n a 0 0 S S 0 125 0 7 60  Brackish
CAKR T05 02 U -150 n  E d >10 >10 n a 1 1 R R 0 150 0 7 40  Circumneutral
CAKR_T05 03 U 95 n E d >92 >92 n a 1 1 R R 3 92 0 5 270  Acidic
CAKR T05 04 U -100 n Es M a a n a 1 1 R R 0 0 6 180  Circumneutral
CAKR_T06 01  Nsp 8y Pv W »p p n a 40 40 (0] O a 49 0 6 100 Circumneutral
CAKR T06 02 Nsp 4y Pv W »p p n a 40 40 [6) (6] a 30 0 6 250  Circumneutral
CAKR T06 03 Nsp 11y Pv W »p p u a 60 60 (0] O a 43 0 6 300  Circumneutral
CAKR T06 04 P 200y F A nd nd n nd nd a 0 7 310  Circumneutral
CAKR_T06_05 Nsa -13 W M 13 24 n a 13 13 L L Im 240 5 40  Acidic
CAKR T06 06 Np 71y F A nd nd u nd 0 0 L L 0 0 6 170 Circumneutral
CAKR T06 07 Nsp 9y Pv W nd nd u a 60 60 (0] (0] a 50 0 6 70  Circumneutral
CAKR_T06_08 Nsa Bly W M »p p n a 23 23 (6] (6] a 31 0 5 110 Acidic
CAKR T06 09 Nsa Sy P W »p p y a 40 40 O O 0 36 0 5 30 Acidic
CAKR_T07 01 Nsa 1230 P W a a y a 30 30 (e} O 0 30 0.1 4 40  Acidic
CAKR_T07_02 Nsa -9y P M 15 15 y a 12 12 L L 0 30 0 6 240  Circumneutral
CAKR_T07_03 Nsa -1y Pv W a a y a 35 35 (6] (6] 0 69 0 6 30  Circumneutral
CAKR_T07 04 Ni -100n W M a a n a 3 3 S S 0 150 0 8 50  Alkaline
CAKR _T07 05 U -100n W M a a n a 3 3 R R 0 15 8 150  Alkaline
CAKR T07 06 Nsa -9y Pv W 0 2 y a 2 2 R R 0 735 8 420  Alkaline
CAKR T07 07 U -100n W M a a n a 0 0 R R 0 10 8 120 Alkaline
CAKR TO08 01 Np 7y F nd nd nd u nd nd nd nd na 8 280  Alkaline
CAKR TO08 02 Nse I5n W M a a n a 0 0 R R 0 0 8 210  Alkaline
CAKR TO08 03 Ni 75n W M a a n a 0 0 S S 0 0 8 100 Alkaline
CAKR T08 04 Ni 5n W M a a n a 2 15 N N 0 0 7 90  Circumneutral
CAKR T08 05 Ni 75n Ps M a a n a 5 5 R R 0 0 8 90  Alkaline
CAKR T08 06 U I5n Ps M a a n a 4 35 R R 0 0 7 90  Circumneutral
CAKR_T08_07 Nsa 24y P W 12 a y a 5 45 L L 0 28 0 6 90  Circumneutral
CAKR_T08 08 Nsp 10y Pv W a a y a 29 29 (@) O 0 29 0 7 170 Circumneutral
CAKR T08 09 Ni I5n W M a a n a 0 0 S S 0 125 0 8 10 Alkaline
CAKR_T08_ 10 U 15 W M a a n a 0 R R 0 0 8 10 Alkaline
CAKR T10 01 U -150 n  Es D a a n a 0 0 Re RE 0 a 8 150  Alkaline
CAKR T10 02 U S50n Ps M 15 3 y a 3 3 R R 1 8 240  Alkaline
CAKR T10 03 Nsa 13y Ps W 0 0 y a 50 40 (0] (6] n 50 0 6 70  Circumneutral
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Appendix 3. Continued.
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CAKR_T10_04 Nsa -2y PW 10 a y a 10 10 R R a 40 0 8 310  Alkaline
CAKR T10 05 U -100n W M a a n a 3 3 R R a 0 7 240  Circumneutral
CAKR_TI11_01 Np 100y F A nd nd u a 0 0 RE RE 0 0 6 160  Circumneutral
CAKR TI11 02 Nt 37 n Es M >37 >37 n a 0 0 RE RE 0 0 7 150  Circumneutral
CAKR TI1 03 Nt -100n E D >30 >30 n a 0 0 RE RE 0 0 7 30  Circumneutral
CAKR TI11 04 Nt -100 n Es D >22 >22 n a 2 2 RE RE 0 0 6 20  Circumneutral
CAKR TI1 05 Nt I5n W M >20 >55 y a 3 4 L L 0 N 6 40  Circumneutral
CAKR_T11_06 Ni 75 n ES D >28 >28 n a 0 0 R R 0 N 6 10 Circumneutral
CAKR_TI1_07 Ni 115 n W M >20 >48 y o a 4 5 L L 0 125 N 6 30  Circumneutral
CAKR_TI11_08 Ni I5n W M >35 >35 n a 3 4 L L 0 N 6 40  Circumneutral
CAKR TI2 01 U -100n W M a a n a 2 2 R R 0 n 6 10 Circumneutral
CAKR_TI12.03 U -100n W M a a n a 05 05 R R 0 0 6 10 Acidic
CAKR TI12 04 U -100n W M a a n a 2 2 R R 0 a 5 10 Acidic
CAKR TI12 05 U -100n W M a a n a 05 05 R R 0 0 4 10 Acidic
CAKR TI2 06 Nsa 40y Ps M a a y a 1 1 R R 0 0 6 10 Acidic
CAKR TI13 01 Nsa -15y Ps M p p y a 40 40 (6] (0] 0 30 1 6 20 Acidic
CAKR_TI13 02 Nsa .18y Ps M p p y p 24 24 L (@) 0 285 6 30  Circumneutral
CAKR T13 03 Nsa 3ly Ps M 16 >40 y a 13 13 L L 0 55 0 5 30 Acidic
CAKR T13_04 U I5n W M >46 >46 n p 5 6 L L 0 1 7 200  Circumneutral
CAKR TI13 05 U 97 n W M >12 >40 y a 10 10 L L 0 97 N 6 40  Circumneutral
CAKR TI3 06 Np 20y F A nd nd u nd nd nd nd ND 7 240  Circumneutral
CAKR T14 01 Np 5y F A nd nd u a 35 35 o (¢} 0 35 a 6 20  Circumneutral
CAKR T14 02 Nsa -2y P W nd nd y a 24 24 L O a 240 5 30 Acidic
CAKR TI14 03 Nsa .17y Ps M 17 a y a 15 15 L L 0 32 0 6 40  Acidic
CAKR T14 04 Nsa -4y Pv W a a y a 30 30 O O 0 26 0 5 70 Acidic
CAKR TI14 05 Nsa -3y Pv W oa a u a 32 32 L (0] 0 32 n 5 40  Acidic
CAKR _TI5 01 Nsa -0y P W 19 >30 y a 13 13 L L 0 30 0 6 130 Circumneutral
CAKR TI5 02 Ts na W nd nd nd u nd nd nd nd na 7 46400  Saline
CAKR TI5 03 Tr -100 n E D a a y a 0 0 S S 0 0 7 Saline
CAKR_T15_04 Ti -100n E D >43 >43 n a 0 0 S S 0 0 8 280  Brackish
CAKR T15 05 Ti -100n E D >40 >40 n a 3 3 R R 0 125 0 8 140  Brackish
CAKR_T15_06 Nsa -0y PV W 7 >40 y o a 4 6 L L 0 40 N 7 7200  Brackish
CAKR_TI5 07 Np y F A nd nd y a nd nd nd ND 8 3000  Brackish
CAKR_T15_08 Np 10y F A nd nd y a 5 5 L L 0 80 0 7 4800  Brackish
CAKR_TI5_ 09 Nsa -3y Ps W 5 >30 y nd 4 14 L L 0 30 0 7 1100  Brackish
CAKR_T15_10 Np 50y F A nd nd u nd nd nd nd ND 8 320  Alkaline
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Appendix 4.

List of vascular plant species found in the Bearing Land Bridge National Preserve and

Cape Krusenstern National Monument, northwestern Alaska, 2002—-2003.

Aspidiaceae (Shield fern)
Dryopteris fragrans (L.) Schott
Aspleniaceae
Gymnocarpium dryopteris (L.) Newm.
Athyriaceae
Cystopteris montana (Lam.) Bernh.
Betulaceae
Alnus crispa (Ait.) Pursh
Betula nana L.
Boraginaceae
Eritrichium aretioides (Cham.) DC.
Mertensia maritima SL
Mertensia paniculata (Ait.) G. Don
Myosotis alpestris F. W. Schmidt
Campanulaceae
Campanula lasiocarpa Cham.
Campanula sp.
Campanula uniflora L
Lomatogonium rotatum (l.) E. Fries
Caprifoliaceae
Linnaea borealis L.
Caryophyllaceae
Arenaria longipedunculata Hult.
Cerastium beeringianum Cham. & Schlecht. var.
Honckenya peploides (L.) Ehrh.
Melandrium apetalum (L.) Fenzl.
Melandrium sp.
Minuartia arctica (Stev.) Aschers. & Graebn.
Minuartia macrocarpa (Pursh) Ostenf.
Minuartia rossii (T. Br.) Graebn.
Minuartia sp.
Moehringia lateriflora (L.) Fenzl
Silene acaulis L.
Silene sp.
Stellaria crassifolia Ehrh.
Stellaria edwardsii R. Br.
Stellaria humifusa Rottb.
Stellaria longipes Goldie
Stellaria sp.
Wilhelmsia physodes (Fisch.) McNeill
Compositae (Asteraceae)
Antennaria friesiana (Trautv.) Ekman
Antennaria sp.
Arnica alpina L.
Arnica frigida C. A. Mey.
Arnica lessingii Greene
Arnica sp.
Artemisia arctica Less. ssp. arctica
Artemisia furcata Bieb.
Artemisia glomerata Ledeb.
Artemisia senjavinensis Bess.
Artemisia sp.
Artemisia tilesii Ledeb.
Aster sibiricus L.
Aster sp.
Chrysanthemum arcticum L.
Chrysanthemum bipinnatum L.
Chrysanthemum integrifolium Richards.
Crepis nana Richards.
Erigeron humilis Graham
Erigeron hyperboreus Greene.
Erigeron purpuratus Greene
Erigeron sp.
Petasites frigidus (L.) Franchet
Saussurea angustifolia (Willd.) DC.
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Saussurea nuda Ledeb.
Senecio atropurpureus (Ledeb.) Fedtsch.
Senecio conterminus Greenm.
Senecio lugens Richardson
Senecio pseudoarnica Less.
Senecio resedifolius Less.
Senecio sp.
Solidago multiradiata Ait. var. multiradiata
Taraxacum phymatocarpum J. Vahl
Taraxacum sp.
Crassulaceae
Sedum rosea (L.) Scop.
Cruciferae (Brassicaceae)
Braya humilis (C. A. Mey.) Robins
Cardamine hyperborea O.E. Schulz
Cardamine pratensis
Cardamine sp.
Cochlearia officinalis L.
Cochlearia officinalis L. ssp. arctica
Draba cinerea Adams.
Draba fladzinensis Wulf
Draba glabella Pursh
Draba nivalis Liljebl.
Draba sp.
Lesquerella arctica (Wormsk.) S. Wats.
Parrya nudicaulis (L.) Regel
Cupressaceae
Juniperus communis L.
Cyperaceae
Carex amblyorhynca Krecz.
Carex aquatilis Wahlenb. ssp. aquatilis
Carex atrofusca Schkuhr
Carex bigelowii Torr.
Carex canescens L.
Carex capillaris L.
Carex capitata Soland. In L.
Carex chordorrhiza Ehrh.
Carex franklinii Boott
Carex glacialis Mack.
Carex glareosa Wahlenb. ssp. amphigena (Fern.) Hulten
Carex krausei Boeck.
Carex lachenalii Schkuhr.
Carex lugens Holm
Carex membranacea Hook.
Carex microchaeta Holm.
Carex misandra R. Br.
Carex nardina E. Fries
Carex obtusata Lilj.
Carex petricosa Dewey
Carex podocarpa C. B. Clarke
Carex ramenskii Kom.
Carex rariflora (Wahlenb.) Smith
Carex rotundata Wahlenb.
Carex rupestris All.
Carex saxatilis L.ssp. laxa (Trautv.) Kalela
Carex scirpoidea Michx.
Carex sp.
Carex subspathacea Wormsk.
Carex Williamsii Britt.
Eriophorum angustifolium Honck. ssp. subarcticum (V.
Eriophorum angustifolium Honck. ssp. triste (T. Fries) Love
Eriophorum brachyanterum Trautv. & Mey.
Eriophorum russeolum Fries
Eriophorum scheuchzeri Hoppe
Eriophorum sp.
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Appendix 4. Continued.

Eriophorum vaginatum L.
Kobresia myosuroides (Vill.) Fiori & Paol.
Kobresia sibirica
Kobresia sp.
Diapensiaceae
Diapensia lapponica L.
Elaegnaceae
Shepherdia canadensis (L.) Nutt.
Empetraceae
Empetrum nigrum L.
Equisetaceae
Equisetum arvense L.
Equisetum scirpoides Michx.
Equisetum variegatum Schleich.
Ericaceae
Andromeda polifolia L.
Arctostaphylos alpina (L.) Spreng.
Arctostaphylos rubra (Rehd. & Wilson) Fern.
Arctostaphylos uva ursi (L.) Sprengel
Cassiope tetragona (L.) D. Don
Chamaedaphne calyculata (L.) Moench
Ledum decumbens (Ait.) Lodd.
Loiseleuria procumbens (L.) Desv.
Oxycoccus microcarpus Turcz. ex Rupr.
Rhododendron camtschaticum Pallas
Rhododendron lapponicum (L.) Wahlenb.
Vaccinium uliginosum L.
Vaccinium vitis idaea L.
Gentianaceae
Gentiana glauca Pallas
Gentiana propinqua Richards. ssp. propinqua
Gentiana sp.
Graminae (Poaceae)

Agropyron boreale (Turcz.) Drobov ssp. alaskanum

Agropyron macrourum (Turcz.) Drobov
Agropyron sp.

Agropyron violaceum (Hornem.) Lange
Agrostis scabra Willd.

Agrostis sp.

Arctagrostis latifolia (R. Br.) Griseb.
Arctophila fulva (Trin.) Anderss.
Bromopsis pumpellianus Scribn.
Bromus sp.

Calamagrostis canadensis (Michx.) Beauv.
Calamagrostis deschampsioides Trin.
Calamagrostis holmii Lange
Calamagrostis inexpansa Gray

Calamagrostis purpurascens R. Br. subs. purpurascens

Calamagrostis sp.

Deschampsia caespitosa (L.) P. Beauv. ssp. caespitosa

Dupontia fischeri R.Br.

Elymus arenarius L. ssp. mollis (Trin.) Hult.
Festuca altaica Trin.

Festuca baffinensis Polunin

Festuca brachyphylla Schult

Festuca rubra L.

Festuca sp.

Hierchloe alpina (Sw.) Roem. & Schult.
Hierochloe pauciflora R. Br.

Poa alpigena (E. Fries) Lindm.

Poa alpina L.

Poa arctica R. Br.

Poa eminens Presl

Poa glauca M. Vahl.

Poa lanata Scribn. & Merr.

Poa sp.

Puccinellia borealis Swallen

Puccinellia phryganodes (Trin.) Scribner & Marr.
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Puccinellia sp.
Trisetum spicatum (L.) Richter

Haloragaceae

Hippuris tetraphylla L.F.
Hippuris vulgaris L.
Myriophyllum spicatum L.

Iridaceae

Iris setosa Pall. ssp. setosa

Juncaceae

Juncus albescens SL

Juncus arcticus Willd.

Juncus biglumis L.

Juncus castaneus Smith
Juncus sp.

Juncus triglumis L.

Luzula arctica Blytt.

Luzula arcuata (Wahlenb.) Sw.
Luzula confisa Lindeb.

Luzula multiflora (Retz.) Lej.
Luzula parviflora (Ehrh.) Desv.
Luzula sp.

Luzula tundricola Gorodk.

Juncaginaceae

Triglochin maritimum L.
Triglochin palustris L.

Leguminosae

Astragalus alpinus L.

Astragalus eucosmus Hornem. Subs. Sealie (LePage) Hult.
Astragalus umbellatus Bunge
Hedysarum alpinum L.

Hedysarum mackenzii Richards.
Lathyrus maritimus SL

Lupinus arcticus S. Wats.

Oxytropis arctica R. Br.

Oxytropis borealis DC

Oxytropis bryophila (E. Greene) Yurtsev
Oxytropis campestris (L.) DC.

Oxytropis maydelliana Trautv.
Oxytropis Mertensiana Turcz.

Oxytropis nigrescens (Pall.) Fisch.
Oxytropis sp.

Lentibulariaceae

Pinguicula villosa L.

Pinguicula vulgaris L.

Utricularia sp.

Utricularia vulgaris L. ssp. macrorhiza (LeConte) Clauson

Liliaceae

Allium schoenoprasum L.

Tofieldia coccinea Richards.

Tofieldia pusilla (Michx.) Pers.

Tofieldia sp.

Veratrum album L. ssp. oxysepalum (Turcz.) Hult.
Zygadenus elegans Pursh

Linaceae

Linum perenne L.

Lycopodiaceae

Lycopodium alpinum L. [=Diphasiastrum alpinum (L.)
Lycopodium annotinum L.
Lycopodium selago SL

Menyanthaceae

Menyanthes trifoliata L.

Onagraceae

Epilobium angustifolium L.
Epilobium ciliatum Raf. ssp. glandulosum (Lehm.) Hoch &
Epilobium latifolium L.

Ophioglossaceae

Botrychium lunaria (L.) Sw.



Appendix 4.

Continued.

Orchidaceae
Coeloglossum viride (L.) Hartm. ssp. bracteatum (Muhl.)
Lloydia serotina (L.) Rchb.
Papaveraceae
Papaver lapponicum (Tolm.) Nordh.
Papaver macounii Greene
Papaver sp.
Pinaceae

Picea glauca (Moench) Voss
Plumbaginaceae
Armeria maritima (Mill.) Willd. ssp. arctica (Cham.) Hult.
Polemoniaceae
Phlox sibirica L. ssp sibirica
Polemonium acutiflorum Willd.
Polygonaceae
Polygonum bistorta L. subsp. plumosum (Small) Hult.
Polygonum sp.
Polygonum viviparum L.
Rumex arcticus Trautv.
Rumex sp.
Portulacaceae
Claytonia acutifolia ssp. graminifolia
Claytonia sarmentosa C. Meyer
Potamogetonaceae
Potamogeton sp.
Primulaceae
Androsace ch jasme Host ssp Le/
Androsace septentrionalis L.
Dodecatheon frigidum Cham. & Schlecht.
Primula anvilensis S. Kelso
Primula borealis Duby
Pyrolaceae
Pyrola asarifolia Michx.
Pyrola grandiflora Radius
Pyrola minor L.
Ranunculaceae
Aconitum delphinifolium DC.
Anemone Drummondii S. Watts.
Anemone Drummondii S. Watts. (Anemone multiceps)
Anemone multifida Poir.
Anemone narcissiflora L.
Anemone parviflora Michx.
Anemone richardsonii Hook.
Anemone sp.
Caltha natans Pall.
Caltha palustris L. ssp. asarifolia (DC.) Hult.
Ranunculus hyperboreus Rottb.
Ranunculus pallasii Schlect.
Ranunculus sp.
Thalictrum alpinum L.
Rosaceae
Dryas octopetala L. ssp. alaskensis (Pors.) Hult.
Dryas integrifolia Vahl.
Dryas octopetala L. ssp octopetala
Geum glaciale Adams
Geum rossii (R. Br.) Ser.
Potentilla biflora Willd.
Potentilla Egedii Wormsk. ssp. grandis (Torr. & Gray)
Potentilla fruticosa L.
Potentilla Hookeriana SL
Potentilla palustris (L.) Scop.
Potentilla sp.
Potentilla uniflora Ledeb.
Potentilla villosa Pall.
Rubus arcticus L.
Rubus arcticus L. ssp. stellatus (Sm.) Boiv. Emend. Hulten
Rubus chamaemorus L.

ia (Spreng.)
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Sanguisorba officinalis L.

Spiraea beauverdiana Schneid.
Rubiaceae

Galium boreale L.

Galium sp.

Galium trifidum L.
Salicaceae

Populus balsamifera L.

Salix alaxensis (Anderss.) Cov.
Salix arbusculoides Anderss.
Salix arctica Pall.
Salix barclayi Anderss.
Salix chamissonis Anderss.
Salix fuscescens Anderss.
Salix glauca L.
Salix hastata L.
Salix lanata richardsonii (Salix richardsonii)
Salix niphoclada SL
Salix ovalifolia Trautv.
Salix phlebophylla Anderss.
Salix planifolia Pursch. ssp.pulchra (Cham.) Argus
Salix reticulata L.
Salix rotundifolia Trautv.
Salix sp.
Saxifragaceae
Chrysosplenium tetrandrum (Lund) T. Fries
Parnassia palustris L.
Saxifraga bronchialis L.
Saxifraga cernua L.
Saxifraga exilis Steph
Saxifraga flagellaris Willd.
Saxifraga hieracifolia Waldst. & Kit.
Saxifraga hirculis L.
Saxifraga oppositifolia L.
Saxifraga punctata L.
Saxifraga sp.
Saxifraga tricuspidata Rottb.
Scrophulariaceae
Castilleja caudata (Pennell) Rebr.
Castilleja elegans Malte
Castilleja hyperborea Pennell
Castilleja sp.
Lagotis glauca Gaertn.
Pedicularis capitata Adams.
Pedicularis kanei Durand subsp. Kanei
Pedicularis labradorica Wirsing
Pedicularis langsdorffii Fisch. subsp.arctica (R. Br.) Pennell
Pedicularis lapponica L.
Pedicularis parviflora J.E. Sm. Ssp. Pennellii (Hult.) Hult.
Pedicularis sp.
Pedicularis sudetica Willd.
Pedicularis verticillata L.
Selaginellaceae
Selaginella selaginoides (L.) Link
Selaginella sibirica (Milde) Hieron.
Umbelliferae (FR=Apiaceae)
Angelica lucida L. (Angelica lucida E. Nels.)
Bupleurum triradiatum Adams
Cnidium cnidifolium (Turcz.) Schishchk
Conioselinum chinense L. BSP.
Heracleum lanatum Michx.
Ligusticum scoticum L. ssp. hultenii (Fern.) Cald. & Tayl.
Valerianaceae
Valeriana capitata Pall.
Violaceae
Viola epipsila Ledeb. ssp. repens (Turcz.) Becker
Viola sp.
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Appendix 5.

Mosses and Liverworts

List of some nonvascular plant species found in the Bering Land Bridge National
Preserve and Cape Krusenstern National Monument, northwestern Alaska, 2002—-2003.

Mosses and Liverworts continued

Warnstorfia sarmentosa (Wahlenb.) Hedenaes
Warnstorfia fluitans (Hedw.) Loeske

Tortula norvegica (Web.f.) Wahlenb. Ex Lindb.
Tortella fragilis (Hook. Et Wils. In Drumm.) Limpr.
Tomentypnum nitens (Hedw.) Loeske
Timmia austriaca Hedw.

Thuidium recognitum (Hedw.) Lindb.
Syntrichia norvegica Web.

Splachnum cf. sphaericum Hedw. (with immature capsules)
Sphenolobus minutus (Schreb.) Berggr.
Sphagnum warnstorfii Russ.

Sphagnum subsecundum Nees ex Sturm
Sphagnum squarrosum Crome

Sphagnum sp.

Sphagnum rubellum Wils.

Sphagnum perfoliatum L.Savicz

Sphagnum obtusum Warnst.

Sphagnum lindbergii Schimp. Ex Lindb.
Sphagnum lenense H.Lindb. ex Pohle
Sphagnum imbricatum Hornsch. Ex Russ.
Sphagnum girgensohnii Russ.

Sphagnum fuscum (Schimp.) Klinggr.
Sphagnum fimbriatum Wils.

Sphagnum compactum DC. In Lam. Et DC.
Sphagnum cf. jensnii H. Lindb.

Sphagnum capillifolium (Ehrh.) Hedw.
Sphagnum balticum (Russ.) Russ. Ex C.Jens.
Sphagnum angustifolium (Russ. Ex Russ.) C.Jens
Scorpidium scorpioides (Hedw.) Limpr.
Schistidium sp. (complex apocarpum)
Sanionia uncinata (Hedw.) Loeske
Rhytidium rugosum (Hedw.) Kindb.
Rhytidiadelphus squarrosus (Hedw.) Warnst.
Rhytidiadelphus sp.

Rhizomnium sp.

Racomitrium sp.

Racomitrium lanuginosum (Hedw.) Brid.
Ptilidium pulcherrimum (G. Web.) Vain.
Ptilidium ciliare (L.) Hampe
Pseudocalliergon turgescens (T.Jens.) Loeske
Polytrichum strictum Brid.

Polytrichum sp.

Polytrichum juniperinum Hedw.

Polytrichum jensenii Hag.

Polytrichum hyperboreum R.Br.

Pohlia sp.

Pohlia nutans (Hedw.) Lindb.

Pohlia cruda (Hedw.) Lindb.

Pleurozium schreberi (Brid.) Mitt.
Plagiothecium denticulatum (Hedw.) B.S.G.
Plagiothecium cavifolium (Brid.) Iwats.
Plagiothecium berggrenianum Frisvoll
Plagiomnium sp.

Plagiomnium ellipticum (Brid.) T.Kop.
Plagiomnium curvatulum (Lind.) Schljakov
Philonotis tomentella Molendo

Paludella squarrosa (Hedw.) Brid.

Mnium thomsonii Schimp.

Mnium sp.

Mnium blyttii B. S.G.

Meesia uliginosa Hedw.

Limprichtia revolvens (Sw.) Loeske
Leptobryum pyriforme (Hedw.) Wils.
Isopterygiopsis pulchella (Hedw.) Iwats.
Hypnum sp.

Hypnum pratense Koch ex Spruce
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Hypnum plicatulum (Lindb.) Jaeg.

Hypnum lindbergii Mitt.

Hypnum holmenii Ando

Hypnum bambergeri Schimp.

Hylocomium splendens (Hedw.) B.S.G.
Eurhynchium pulchellum (Hedw.) Jenn.
Drepanocladus sp.

Drepanocladus aduncus (Hedw.) Warnst. s.1.
Ditrichum flexicaule (Schwaegr.) Hampe
Distichium capillaceum (Hedw.) B.S.G.
Didymodon asperifolius (Mitt.) Crum et al.
Dicranum spadiceum Zett.

Dicranum sp.

Dicranum majus Sm.

Dicranum laevidens Williams

Dicranum groenlandicum Brid.

Dicranum fuscescens Turner.

Dicranum elongatum Schleich. ex Schwaegr.
Dicranum bonjeanii De Not

Dicranum angustum

Dicranum alaevdens Williams

Dicranum acutifolium (Lindb. et H.Arnell) C.Jens.
Ctenidium procerrimum (Mol.) Lindb.

Climacium dendroides (Hedw.) Web. et Mohr.
Cirriphyllum cirrosum (Schwaegr.) Grout
Cinclidium subrotundum Lindb.

Cinclidium latifolium Lindb.

Cinclidium arcticum B.S.G.

Ceratodon purpureus (Hedw.) Brid.

Catoscopium nigritum (Hedw.) Brid.

Campylium stellatum (Hedw.) C.Jens.

Campylium sp.

Campylium polygamum (B.S.G.) C.Jens.
Campylium longicuspis (Lindb. etH.Arnell) Hedenaes
Calliergon stramineum (Brid.) Kindb.

Calliergon giganteum (Schimp.) Kindb.

Bryum sp.

Bryum pseudotriquetrum (Hedw.) Gaertn. et al.
Bryum pallescens Schleich. exSchwaegr. (with capsules)
Bryoerythrophyllum recurvirostrum (Hedw.) Chen
Brachythecium sp.

Brachythecium salebrosum (Web. et Mohr) B.S.G.
Brachythecium rivulare Schimp. in B.S.G.
Brachythecium reflexum (Starke in Web.et Mohr) Schimp.
Brachythecium mildeanum (Schimp.) Schimp. ex Milde
Brachythecium erythrorrhizon Schimp. in B.S.G.
Brachythecium coruscum Hag.

Aulacomnium turgidum (Wahlenb.) Schwaegr.
Aulacomnium sp.

Aulacomnium palustre (Hedw.) Schwaegr.
Aulacomnium acuminatum

Aongstroemia longipes (Somm.) B.S.G.
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Xanthoria sp.

Vulpicida tilesii (Ach.) J.-E. Mattsson & M. J. Lai
Vulpicida pinastri (Scop.) J.-E. Mattsson & M. J. Lai (on bark)
Umbilicaria torrefacta (Lightf.) Schrader
Umbilicaria sp.

Umbilicaria proboscidea (L.) Schrader
Umbilicaria hyperborea (Ach.) Hoffm.
Umbilicaria caroliniana Tuck.

Thamnolia vermicularis (Sw.) Ach. ex Schaerer
Thamnolia subuliformis (Ehrh.) Culb.
Stereocaulon tomentosum Fr.

Stereocaulon sp.



Appendix 5.

Continued.

Lichen continued

Stereocaulon paschale (L.) Hoffm.
Stereocaulon apocalypticum Nyl. (saxicolous)
Stereocaulon alpinum Laurer ex Funck
Sphaerophorus globosus (Hudson) Vainio
Sphaerophorus firagilis (1.) Pers.

Rinodina turfacea (Wahlenb.) Korber
Rhizocarpon umbilicatum (Ramond) Flagey
Rhizocarpon sp.

Rhizocarpon geographicum (L.) DC.
Ramalina almquistii Vainio

Psoroma hypnorum (Vahl) Gray

Pseudephebe pubescens (L.) M. Choisy
Pertusaria subobducens Nyl.

Pertusaria sp.

Pertusaria panyrga (Ach.) A. Massal.
Pertusaria dactylina (Ach.) Nyl.

Peltigera sp.

Peltigera rufescens (Weiss) Humb.

Peltigera neckeri Hepp ex Miill. Arg.
Peltigera malacea (Ach.) Funck

Peltigera leucophlebia (Nyl.) Gyelnik
Peltigera didactyla var. extenuata (Nyl. ex Vainio) Goffinet &
Peltigera canina (L.) Willd.

Peltigera aphthosa (L.) Willd.

Parmeliopsis hyperopta (Ach.) Arnold (on bark)
Parmeliopsis ambigua (Wulfen) Nyl. (on bark)
Parmelia sp.

Parmelia omphalodes (L.) Ach.

Ophioparma lapponica (Résinen) Hafellner & R. W. Rogers
Ochrolechia upsaliensis (L.) A. Massal.
Ochrolechia sp.

Ochrolechia inaequatula (Nyl.) Zahlbr.
Ochrolechia frigida (Sw.) Lynge

Nephroma sp.

Nephroma arcticum (L.) Torss

Melanelia commixta (Nyl.) Thell

Megaspora verrucosa (Ach.) Hafellner & V. Wirth
Masonhalea richardsonii (Hook.) Karnefelt
Lobaria linita (Ach.) Rabenh.

Leptogium gelatinosum (With.) J. R. Laundon
Lecanora sp.

Lecanora epibryon (Ach.) Ach.

Lecanora beringii Nyl.

Icmadophila ericetorum (L.) Zahlbr.
Hypogymnia subobscura (Vainio) Poelt
Hypogymnia physodes (L.) Nyl.

Flavocetraria nivalis (L.) Kérnefelt & Thell

Lichen continued
Flavocetraria cucullata (Bellardi) Karnefelt & Thell
Evernia perfiragilis Llano
Dactylina arctica (Richardson) Nyl.
Cladonia uncialis (L.) F. H. Wigg.
Cladonia sulphurina (Michaux) Fr.
Cladonia subfurcata (Nyl.) Arnold
Cladonia squamosa Hoffm.
Cladonia sp.
Cladonia pyxidata (L.) Hoffm.
Cladonia pleurota (Florke) Schaerer
Cladonia nipponica Asah.
Cladonia macilenta Hoffm.
Cladonia gracilis (L.) Willd.
Cladonia furcata (Hudson) Schrader
Cladonia ecmocyna Leighton
Cladonia cornuta (L.) Hoffm.
Cladonia coccifera (L.) Willd. s. lat.
Cladonia chlorophaea (Florke ex Sommerf.) Sprengel
Cladonia bellidiflora (Ach.) Schaerer
Cladonia amaurocraea (Florke) Schaerer
Cladonia alaskana A. Evans
Cladina stygia (Fr.) Ahti
Cladina stellaris (Opiz) Brodo
Cladina sp.
Cladina rangiferina (L.) Nyl.
Cladina mitis (Sandst.) Hustich
Cladina arbuscula (Wallr.) Hale & Culb.
Cetrariella fastigiata (Delise ex Nyl.) Karnefelt & Thell
Cetrariella delisei (Bory ex Schaerer) Kérnefelt & Thell
Cetraria tilesii Ach.
Cetraria sp.
Cetraria nigricans Nyl.
Cetraria laevigata Rass.
Cetraria kamczatica Savicz
Cetraria islandica subsp. crispiformis (Rasénen) Kérnefelt
Cetraria islandica (L.) Ach. subsp. islandica
Cetraria islandica (L.) Ach.
Cetraria aculeata (Schreber) Fr.
Caloplaca tiroliensis Zahlbr.
Buellia insignis(Naeg. ex Hepp) Th. Fr.
Bryoria nitidula (Th. Fr.) Brodo & D. Hawksw.
Bryocaulon divergens (Ach.) Kérnefelt
Asahinea chrysantha (Tuck.) Culb. & C. Culb.
Arctoparmelia separata (Th. Fr.) Hale
Alectoria sp.
Alectoria ochroleuca (Hoffm.) A. Massal.
Alectoria nigricans (Ach.) Nyl.
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Appendix 6.

List of signature vegetation classes with associated ground vegetation classes and

showing the number of spectral signatures for each class.

Consolidated Signature Vegetation
Class

Number of

Gound Vegetation Class Signatures Used

Partially Vegetated

Open White Spruce

Lichen
Elymus

Bluejoint Meadow

Moist Sedge—Dryas Tundra

Halophytic Sedge—Grass Wet
Meadow, brackish

Subartic Lowland Sedge Bog
Meadow

Subartic Lowland Sedge—Moss
Bog Meadow

Dryas Dwarf Shrub Tundra

BELA-CAKR Landcover Mapping

Barren 20
Partially Vegetated 37
Water 1
Open White Spruce 5
White Spruce Woodland 3
Lichen 8
Elymus 4
Bluejoint Meadow 5
Bluejoint—Herb 1
Bluejoint—Shrub 2
Wet Sedge Meadow Tundra 1
Moist Sedge—Dryas Tundra 5
Moist Sedge—Shrub Tundra 12
Moist Sedge—Willow Tundra 1
Tussock Tundra 1
Dryas—Forb Dwarf ShrubTundra 13
Dryas—Sedge Dwarf ShrubTundra 9
Bearberry Dwarf Shrub Tundra 1
Halophytic Grass Wet Meadow,
brackish 1
Halophytic Sedge Wet Meadow,
brackish 2
Halophytic Sedge—Grass Wet
Meadow, brackish 3
Halophytic Sedge—Grass Wet
Meadow, saline 2
Halophytic Sedge Wet Meadow,
saline 1
Fresh Sedge Marsh 2
Subartic Lowland Sedge Bog
Meadow 8
Wet Sedge Meadow Tundra 5
Wet Sedge—Willow Tundra 2
Subartic Lowland Sedge—Moss Bog
Meadow 10
Wet Sedge Meadow Tundra 6
Dryas—Forb Dwarf ShrubTundra 1
Dryas—Lichen Dwarf Shrub Tundra 10
Dryas—Sedge Dwarf ShrubTundra 5
Dryas Dwarf Shrub Tundra 17
Ericaceous Dwarf Shrub Tundra 6
114



Appendix 6. Continued.

Consolidated Signature Vegetation Number of
Class Gound Vegetation Class Signatures Used
Crowberry Dwarf Shrub Tundra Crowberry Dwarf Shrub Tundra 8
Open Low Mesic Shrub Birch—
Ericaceous Shrub Dryas Dwarf Shrub Tundra 1
Ericaceous Dwarf Shrub Tundra 1
Closed Low Shrub Birch—Ericaceous
Shrub 5
Open Low Shrub Birch—Ericaceous
Shrub Bog 1
Open Low Mesic Shrub Birch—
Ericaceous Shrub 10
Open Low Ericaceous Shrub Bog 1
Open Low Shrub Birch—Willow Closed Low Shrub Birch 1
Closed Low Shrub Birch—Willow 5
Closed Low Ericaceous Shrub 1
Open Low Shrub Birch—Willow 12
Open Mixed Low Shrub—Sedge
Tussock Tundra Tussock Tundra 7
Open Mixed Low Shrub—Sedge
Tussock Tundra 31
Subartic Lowland Sedge—Moss Bog
Open Low Willow Meadow 1
Closed Low Willow
Open Low Willow 12
Open Tall Alder 1
Closed Tall Alder—Willow Closed Tall Alder 4
Closed Tall Alder—Willow 1
Closed Tall Shrub Birch—Willow 1

Open Tall Willow Open Balsam Poplar 1
Closed Tall Willow 2
Open Tall Alder 1
Open Tall Alder-Willow 2
Open Tall Willow 5
Water Common Marestail 2
Fresh Grass Marsh 1
Water 55
Total 389
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Veg_Map == d
Phys_Code == |

Bpv
fuzz signature |= i
Poly ID = 1171|
Veg_Map == 37
Hbl

Phys_Code == |

Veg_Map == 1ﬂ
Alpine Alkaline Dry Barren Bpv- CAKR<
Poly ID =
Veg_Map == d
Bpv-CAKR (1 i<
Poly ID == |

Veg_Map == d

fuzz signature !=

| ity
Poly ID == 1171|
T

Bpv (1)

slope100 >=

"ERDAS

LI I— l LY =
gengrapmf imaging made s:mp.'e

Appendix 7. Example diagrams of rules used to model ecotypes using the ERDAS knowledgebase
routine. See Appendix 8 for codes.
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Poly ID == 1@
| Hgdl
Veg_Map == 30%
Veg_Map == 27j
s
Poly ID == 12
Veg_Map == 27j
| Sddt (1)
Poly ID == 13%
Veg_Map == @

| Bpv2 Phys_Code == j

fuzz signature ==
Veg_Map == 27
Sddt2
Phys_Code ==
Alpine Alkaline Dry Dryas Shr \ Veg_Map == 34
Phys_Code ==

_ fuz sgnatre 4
 vea.tiap =214
Py Code =1
 vea.tiap - 34
 PryCoe = |
 vea.tiap - 27
__poyD—4
 vea.tiap =27
__poyo—4
 vea.tiap =27
__Poyio=-19
 voa_tiap - 94
_ Poyio=-2g

Veg_Map == 27
Sddt (1) 2

Poly ID ==

Veg_Map == 27
Sddt (1) 3

Poly ID ==

Veg_Map == 27
Sddt (1) 4

Poly ID == @

Veg_Map == 99!

Poly ID == 2l

" ERDAS

geographic imaging made simple”

Appendix 7. Continued.
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Veg_Map == 14‘

‘ Bpv3 Phys_Code == A{

fuzz signature != 21

Veg_Map == 37(1

Hbl2
Phys_Code == A{

Veg_Map == 4‘

Poly ID == 21|

Veg_Map == 4‘

Poly ID == é

Veg_Map == 9951

Bpv4

Alpine Nonalkaline Dry Barre

Bpv4 (1)

water 9 Poly ID == 104|

fuzz signature != 24‘%

Veg_Map == 994

water 9 (1)
Poly ID == 131|

L BB LS\
geographic imaging made simple”

Appendix 7. Continued.
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Appendix 7.

Veg_Map == 30%
Hgdl 2

Poly ID == 10&

Veg_Map == 30j
Hgdl 2 (1)

Poly ID == 131

Veg_Map == 3j
Hgwsmb|

Poly ID == 131
Veg_Map == 1(1

Bpv 5 Phys_Code == i
fuzz signature == ﬁ

Veg_Map == 27%
Sddt 3
Phys_Code == j
Veg_Map == 30%
Hgdl 2 (1) %
Poly ID == 1,
Veg_Map == 30%
Hgdl 2 (1) ﬁ
b Poly ID == 24

Alpine Nonalkaline Dry Dryas Shr

Veg_Map == 30%
Hgdl 2 (1) ﬂ

Poly ID == 34

Veg_Map == 34j
Hgwsb 2

Poly ID == 34

Veg_Map == 3j
Hgwsmb 2

Poly ID == 31‘*

Veg_Map == 3j
Hgwsmb 2 (1

Poly ID == 24

Veg_Map == 27j
Sddt 4

Poly ID == 21

Veg_Map == 27j
Sddt 4 (1)‘

Poly ID == 2%‘

Veg_Map == 99j

Poly ID == 3|

i _
[ al .f"'li

7ERDAS

geographic imaging made simple”

Continued.
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Appendix 8.

Codes used in ERDAS rule-based classification of ecotypes for Bering Land Bridge

National Preserve and Cape Krusenstern National Monument, 2004.

ERDAS Numeric Code Variable Title Alpha Code
ERDAS Park Code Park
1 BELA
2 CAKR
Vegetation
ERDAS Veg Map Code Signature Vegetation Name Alpha Code
10 Partially Vegetated Bpv
124 Open White Spruce Forest Fnows
370 Lichen Hbl
302 Elymus Meadow Hgdl
311 Bluejoint Meadow Hgmb
323 Sedge—Dryas Tundra Hgmsd
346 Halophytic Sedge—Grass Wet Meadow Hgwhsgb
342 Lowland Sedge Bog Meadow Hgwsb
343 Lowland Sedge—Moss Bog Meadow Hgwsmb
270 Dryas Dwarf Shrub Tundra Sddt
283 Crowberry Dwarf Shrub Tundra Sdee
253 Open Low Shrub Birch—Ericaceous Shrub  Slobe
257 Open Low Shrub Birch—Willow Shrub Slobw
252  Open Low Mixed Shrub—Tussock Tundra  Slott
260 Open Low Willow Shrub Slow
224  Closed Tall Alder—Willow Shrub Stcaw
231 Open Tall Willow Shrub Stow
999 Water \\Y
0 unclassified
ERDAS Phys Code Aggregated Physiography
1 Alkaline Alpine and Upland
2 Coastal
3 Lowland
4 Nonalkaline Alpine and Upland
5 Riverine
6 Upland
7 Upland Lava
8 Upland-Lowland
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Appendix 10.

Cross-tabulation of consistency between independently derived spectral classes (nodes
of hierarchical clustering) and signature vegetation class. Boxes denote central

tendencies of nodes associated with vegetation types.
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Appendix 14. Vegetation cover and frequency for ecotypes described by two plant associations. Data
summarized by plant association.

Alpine Alkaline Dry Dryas Shrub Alpine Alkaline Dry Dryas Shrub

Dryas integrifolia—

R}gdodengroj:t lapponicum —Cover  freq Dryas octopetala—Potentilla —Cover  freq
(n=16) Mean SD % uniflora (n="7) Mean SD %
Total Vascular Cover 73.9 10.9 100 Total Vascular Cover 49.5 19.6 100
Total Evergreen Shrub Cover 49.2 12.1 100 Evergreen Tree 0.7 1.9 14
Cassiope tetragona 53 5.2 83 Picea glauca 0.7 1.9 14
Dryas integrifolia 31.7 18.6 83 Total Evergreen Shrub Cover 39.8 17.0 100
Rhododendron lapponicum 1.4 1.8 83 Cassiope tetragona 0.3 0.5 29
Total Deciduous Shrub Cover 10.5 4.1 100 Dryas octopetala 393 16.4 100
Salix arctica 42 2.3 100 Rhododendron lapponicum 0.0 0.0 29
Andromeda polifolia 0.5 0.5 50 Total Deciduous Shrub Cover 0.7 1.2 43
Arctostaphylos rubra 3.7 1.5 100 Arctostaphylos alpina 0.1 0.4 14
Salix reticulata 1.3 1.9 67 Arctostaphylos rubra 0.1 0.4 14
Vaccinium uliginosum 0.7 1.2 50 Salix reticulata 0.3 0.8 29
Total Forb Cover 8.6 3.0 100 Total Forb Cover 6.1 14 100
Senecio sp. 0.1 0.1 50 Androsace chamaejasme 0.1 0.0 71
Polygonum viviparum 0.3 0.4 100 Artemisia furcata 0.2 0.4 57
Equisetum variegatum 0.5 0.8 67 Artemisia senjavinensis 0.2 0.4 29
Anemone sp. 0.1 0.1 50 Castilleja hyperborea 0.0 0.1 43
Artemisia furcata 0.1 0.1 50 Erigeron sp. 0.2 0.4 29
Astragalus umbellatus 0.1 0.1 67 Hedysarum mackenzii 0.7 1.1 71
Chrysanthemum integrifolium 0.1 0.0 33 Lesquerella arctica 0.1 0.1 57
Hedysarum alpinum 1.0 12 67 Minuartia arctica 0.0 0.1 43
Lagotis glauca 0.2 04 50 Oxytropis bryophila 0.3 0.8 29
Pedicularis capitata 0.3 0.4 100 Oxytropis nigrescens 0.2 0.4 43
Saussurea angustifolia 0.5 0.5 50 Phlox sibirica sibirica 0.3 0.8 29
Saxifraga oppositifolia 1.0 1.1 50 Pinguicula vulgaris 0.0 0.1 43
Silene acaulis 0.4 0.5 83 Potentilla uniflora 0.2 0.4 29
Thalictrum alpinum 0.1 0.1 67 Saxifraga oppositifolia 1.3 0.7 100
Tofieldia coccinea 0.2 04 50 Senecio resedifolius 0.0 0.1 43
Tofieldia pusilla 0.4 0.5 67 Silene acaulis 0.0 0.1 43
Total Grass Cover 0.3 0.4 67 Total Grass Cover 0.3 0.7 57
Arctagrostis latifolia 0.2 0.4 17 Festuca altaica 0.3 0.8 14
Total Sedge Cover 53 1.9 100 Total Sedge Cover 1.9 1.5 100
Eriophorum angustifolium 0.5 0.5 50 Carex franklinii 0.3 0.8 14
Carex bigelowii 0.7 1.0 33 Carex nardina 0.6 0.8 57
Carex membranacea 0.5 0.5 50 Kobresia sp. 0.1 0.4 14
Carex misandra 0.5 0.8 33 Total NonVascular Cover 14.1 9.8 100
Carex scirpoidea 2.3 23 100 Total Moss Cover 12 2.2 57
Total NonVascular Cover 60.1 32.1 100 Rhytidium rugosum 0.2 0.4 29
Total Moss Cover 14.2 9.0 100 Tortella fragilis 0.7 1.9 14
Hylocomium splendens 2.5 42 33 Total Lichen Cover 12.9 10.4 100
Rhytidium rugosum 4.0 4.7 67 Flavocetraria nivalis 1.1 13 57
Tomentypnum nitens 55 73 67 Thamnolia vermicularis 1.8 1.6 100
Total Lichen Cover 459 34.5 100 Cetraria tilesii 0.3 0.5 29
Flavocetraria nivalis 2.8 1.9 83 Evernia perfragilis 0.1 0.1 29
Thamnolia vermicularis 5.8 5.6 83 Flavocetraria cucullata 1.1 13 57
Alectoria ochroleuca 1.7 2.0 67 Ochrolechia frigida 2.3 5.6 43
Bryocaulon divergens 0.7 1.2 33 Ochrolechia upsaliensis 0.6 1.5 29
Cetraria islandica cf 5.5 12.0 50 Pertusaria sp. 2.4 3.8 43
Cetraria tilesii 0.2 0.4 50 Pertusaria subobducens 0.6 1.5 14
Dactylina arctica 0.9 1.2 67 Thamnolia subuliformis 0.4 0.9 29
Flavocetraria cucullata 11.0 12.6 100 Vulpicida tilesii 0.5 0.8 57
Masonhalea richardsonii 0.3 0.5 33 Total Bare Ground 52.9 28.4 100
Nephroma arcticum 7.0 16.2 50 Litter alone 12.0 13.7 100
Ochrolechia frigida 3.0 4.0 50 Soil 40.9 28.3 100
Total Bare Ground 34.9 23.1 100

Litter alone 28.3 22.9 100

Soil 6.5 5.7 100
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Appendix 14. Continued.

Lacustrine Marestail Marsh

Coastal Barrens

. . . Cover Freq . . Cover Freq
Hippuris vulgaris— Elymus arenarius mollis—
Potamogeton sp (n=3) Mean SD % Lathyrus maritimus (n = 6) Mean SD %
Total Vascular Cover 22.8 21.6 100 Total Vascular Cover 3.8 6.6 33
Total Forb Cover 22.1 20.5 100 Total Deciduous Shrub Cover 0.0 0.1 17
Ranunculus pallasii 0.7 12 33 Salix ovalifolia 0.0 0.0 17
Hippuris vulgaris 13.3 7.6 100 Salix planifolia pulchra 0.0 0.0 17
Caltha palustris 0.3 0.6 33 Total Forb Cover 1.6 2.6 33
Menyanthes trifoliata 0.7 1.2 33 Stellaria sp. 0.0 0.0 17
Potamogeton sp. 0.4 0.6 67 Artemisia tilesii 0.0 0.0 17
Potentilla palustris 6.7 11.5 33 Honckenya peploides 1.0 1.5 33
Total Grass Cover 0.3 0.6 33 Lathyrus maritimus 0.2 0.4 33
Arctophila fulva 0.3 0.6 33 Mertensia maritima 0.3 0.8 17
Total Sedge Cover 0.3 0.6 33 Senecio pseudoarnica 0.0 0.0 17
Carex aquatilis 0.3 0.6 33 Total Grass Cover 22 4.0 33
Total NonVascular Cover 53 9.2 33 Festuca rubra 0.0 0.0 17
Total Moss Cover 53 9.2 33 Elymus arenarius mollis 22 4.0 33
Limprichtia revolvens 33 5.8 33 Total NonVascular Cover 0.1 0.2 33
Scorpidium scorpioides 1.7 2.9 33 Total Moss Cover 0.1 0.2 33
Sphagnum cf. jensnii 0.3 0.6 33 Ceratodon purpureus 0.0 0.1 17
Total Bare Ground 91.7 13.5 100 Bryum pseudotriquetrum 0.0 0.1 17
Water 913 14.2 100 Dicranum spadiceum 0.0 0.1 17
Litter alone 0.3 0.6 33 Leptobryum pyriforme 0.0 0.1 17
Total Bare Ground 98.3 4.1 100
Litter alone 2.7 4.1 50
Soil 95.7 6.5 100
Lacustrine Marestail Marsh
. X Cover Freq
Carex aquatilis—Caltha palustris Coastal Barrens
(n=2) Mean SD %
Total Vascular Cover 42.1 8.4 100 Carex ramenskii-Puccinellia
Total Deciduous Shrub Cover 0.5 07 50 phryganodes (n=1) % Cover
Salix fuscescens 0.5 0.7 50 Total Vascular Cover 1.4
Total Forb Cover 16.6 16.2 100 Total Forb Cover 03
Ranunculus hyperboreus 1.5 2.1 50 Stellaria humifusa 0.1
Hippuris vulgaris L5 2.1 50 Chrysanthemum arcticum 0.1
Caltha natans 7.5 10.6 50 Potentilla egedii 0.1
Caltha palustris 1.5 2.1 50 Total Grass Cover 0.1
Myriophyllum spicatum L5 2.1 50 Elymus arenarius mollis 0.1
Polemonium acutiflorum 0.1 0.1 50 Total Sedge Cover 1.0
Potamogeton sp. 0.5 0.7 50 Carex subspathacea 1.0
Potentilla palustris 25 3.5 50 Total NonVascular Cover 0.2
Total Grass Cover 10.0 14.1 50 Total Moss Cover 02
Arctophila fulva* 10.0 14.1 50 Sphagnum obtusum 0.2
Total Sedge Cover 15.0 212 50 Total Bare Ground 99.1
Eriophorum angustifolium 7.5 10.6 50 Water 1.0
Carex aquatilis 7.5 10.6 50 Litter alone 0.1
Total NonVascular Cover 1.5 2.1 50 Soil 98.0
Total Moss Cover 1.5 2.1 50
Sphagnum squarrosum 1.5 2.1 50
Total Bare Ground 125.0 35.4 100
Water 80.0 28.3 100
Litter alone 45.0 63.6 50

*Arctophila fulva typically occurs as a unique plant association,
but was included here because of insufficient data to describe it

separately.
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Appendix 14. Continued.

Coastal Brackish Wet Sedge—Grass Meadow Coastal Brackish Wet Sedge—Grass Meadow
Cover Fre
Salix ovalifolia—Deschampsia Cover freq Carex ramenskii-Dupontia 4
caespitosa (n = 2) Mean SD % Sfisheri (n=35) Mean SD %
Total Vascular Cover 53.6 14.3 100 Total Vascular Cover 459 11.1 100
Total Deciduous Shrub Cover 11.0 12.7 100 Total Deciduous Shrub Cover 2.6 42 60
Salix ovalifolia 11.0 12.7 100 Salix ovalifolia 24 4.3 40
Total Evergreen Shrub Cover 0.6 0.6 100 Salix fuscescens 02 0.4 20
Empetrum nigrum 0.6 0.6 100 Total Forb Cover 8.3 5.8 100
Total Forb Cover 8.5 26 100 Stellaria humifusa 4.0 3.7 100
Sedum rosea 0.1 0.1 50 Cochlearia officinalis 1.8 22 60
Androsace chamaejasme 0.1 0.1 50 Rumex arcticus 0.3 0.4 80
Pedicularis sudetica 2.0 0.0 100 Chrysanthemum bipinnatum 0.0 0.0 20
Rumex arcticus 0.1 0.0 100 Polygonum sp. 0.0 0.0 20
Stellaria sp. 0.1 0.1 50 Potentilla egedii 2.2 4.4 60
Castilleja elegans 0.5 0.7 50 Potentilla sp. 0.0 0.0 20
Chrysanthemum arcticum 1.0 0.0 100 Total Grass Cover 8.8 52 100
Cochlearia officinalis arctica 1.0 0.0 100 Calamagrostis holmii 2.4 4.3 40
Lathyrus maritimus 0.5 0.7 50 Dupontia fisheri 2.0 1.9 80
Melandrium apetalum 0.1 0.1 50 Calamagrostis deschampsioides 3.0 4.5 40
Pedicularis langsdorffii arctica 0.5 0.7 50 Poa arctica SL 0.4 0.9 20
Potentilla sp. 0.1 0.0 100 Deschampsia caespitosa 1.0 22 20
Primula borealis 0.1 0.1 50 Total Sedge Cover 26.2 44 100
Saxifraga exilis 25 35 50 Carex aquatilis 0.2 04 20
Total Grass Cover 19.1 5.6 100 Carex ramenskii 26.0 42 100
Dupontia fisheri 25 35 50 Total Bare Ground 73.4 21.2 100
Calamagrostis deschampsioides 7.5 35 100 Water 0.2 0.4 60
Arctagrostis latifolia 2.5 35 50 Litter alone 62.0 22.5 100
Deschampsia caespitosa 6.0 5.7 100 Soil 11.2 217 100
Elymus arenarius mollis 0.6 0.6 100
Total Sedge Cover 14.6 0.8 100
Eriophorum angustifolium 1.1 1.3 100
Carex aquatilis 1.0 14 50
Carex amblyorhynca 2.5 35 50
Carex canescens 1.0 1.4 50
Carex ramenskii 7.5 35 100
Juncus albescens 1.5 2.1 50
Total NonVascular Cover 16.0 15.6 100
Total Moss Cover 16.0 15.6 100
Bryum sp. 3.8 1.8 100
Aulacomnium palustre 1.0 1.4 50
Bryum pallescens 2.5 35 50
Campylium polygamum 2.5 35 50
Campylium sp. 3.8 1.8 100
Leptobryum pyriforme 2.5 35 50
Total Bare Ground 49.5 14.8 100
Water 0.5 0.7 50
Litter alone 47.5 17.7 100
Soil 1.5 2.1 50
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