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A primary objective of ecological monitoring programs typically includes the efficient detection of pop-
ulation trends. Passerines as a group are important ecological indicators and are often included in such
programs to provide information on multiple species with a single survey technique. However, com-
monly used field and analytical approaches may not provide appropriate inference or sensitivity due
to assumption violations and differences in the proportion of the population exposed to sampling. Recent
methodological developments utilizing repeated point counts and an N-mixture modeling approach for
analysis may produce more consistent and interpretable estimates applicable to the superpopulation of
individuals using a site during the breeding season. These estimates should be more useful for monitoring
because they are not conditioned on presence or availability as are most single-visit approaches. We used
repeated count data collected in Denali National Park and Preserve, Alaska (Denali) between 1995 and
2009 from 12 common passerine species to assess variation in presence and availability throughout
the season, estimate trends in superpopulation abundance, and provide recommendations for the design
of future monitoring programs. We found that variation in detection due to presence and availability was
large and differed among species. After accounting for these sources of variation, we estimated abun-
dance of Wilson’s warblers (Wilsonia pusilla) had declined by approximately 48% and fox sparrow (Passe-
rella iliaca) abundance had increased by approximately 250% over 15 years. Combined, our results suggest
that if trend estimation is a priority, passerine monitoring programs should formally address all compo-
nents of the detection process, including the probabilities of presence and availability.

Published by Elsevier Ltd.

Keywords:

Availability

Detection probability
Long-term monitoring
Population trend
Repeated counts
Superpopulation

1. Introduction et al., 2009; Rosenstock et al., 2002), but uncertainty in the appro-
priate direction for long-term passerine monitoring programs

While valuable and necessary for conservation, many long-term remains.

monitoring programs have suffered from poor planning and study
design (Lindenmayer and Likens, 2009, 2010; Reynolds et al., 2011;
Thompson et al., 2011). Lack of detailed thought and direction dur-
ing the design phase of a monitoring program can prevent proper
inference for the population or system of interest and limit utility
for management (Nichols and Williams, 2006). Similarly, improper
or incomplete understanding of the type of inference that can be
made based on the field sampling methods and associated analyses
can further reduce the utility of monitoring data, potentially lead-
ing to erroneous conclusions or delays in appropriate conservation
decisions. The development of suitable monitoring schemes for
passerine birds, and the problem of incomplete detection have re-
ceived much attention in the scientific literature in recent years
(e.g., Alldredge et al., 2007a; Farnsworth et al., 2002, 2005; Nichols
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The comparability of estimates of detection probability (p) and
abundance based on different field methods is largely dependent
on those components of the detection process addressed by each
method and the validity of the assumptions made regarding those
remaining. A recent methodological review by Nichols et al. (2009)
identified 4 primary components of p: (1) the probability that the
bird’s home range includes at least a portion of the sampling unit,
Ds, (2) the probability that the bird is present within the sample
unit during the survey period, p, (3) the probability that the bird
is available for detection during the sampling event, p,, and (4)
the probability that a bird is detected given that it is present and
available, p,. The first, ps, was identified as a part of all detection
methods that is generally dealt with through study design. The
remaining three components must be addressed explicitly, or one
must assume that the unaddressed components of p do not vary
across time and space, otherwise inference will apply to an unde-
fined segment of the population. These assumptions may not be
reasonable in many situations and can lead to large differences
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in inference and conclusions. In addition, because each of the most
commonly applied field techniques addresses different compo-
nents of incomplete detection, the definition of the ‘population’
to which the resulting abundance estimates apply varies. This lim-
its meaningful comparisons of estimates based on different field
methods, and leads to further confusion regarding which ‘popula-
tion’ is being monitored.

Unadjusted point counts are one of the most commonly used
field sampling approaches for long-term monitoring of passerine
populations in North America (e.g., Peterjohn, 1994; Ralph et al.,
1995; Rosenstock et al., 2002; Sauer et al., 2003) and were gener-
ally developed with the broad goal of identifying and assessing
changes in the abundance of breeding passerines at large scales
(e.g., Hutto, 1998; Peterjohn, 1994). These methods implicitly as-
sume that pp, pq, and pg vary little (or not at all) relative to popula-
tion trends (Anderson, 2001; Nichols et al., 2009; Ralph et al.,
1995; Rosenstock et al., 2002). The raw counts are treated as an in-
dex of abundance across space and time (Johnson, 2008) and are
used to assess population trajectory (e.g., Ralph et al., 1995). De-
spite widespread use, these index surveys often violate the
assumption of a relatively constant p (Burnham, 1981; Farnsworth
et al., 2002; Thompson, 2002; Wilson and Bart, 1985), and a reli-
ance on standardization to meet the assumptions of constant p is
unreasonable in most circumstances. Unexplained variation in p
can produce biased estimates of abundance and trends (Kéry
et al., 2005; Pollock et al., 2002) and can reduce efficiency in esti-
mating population change (Sauer et al., 2003). The inclusion of
covariates related to systematic changes in detection components
through the use of Bayesian hierarchical models has been shown
to reduce bias for large-scale passerine monitoring programs based
on simple point count data (Link and Sauer, 1997, 1998, 2002).
However, this approach cannot account for covariates such as suc-
cession or arrival timing that may also be associated with trends in
abundance (Nichols et al., 2009). This approach may likewise be
less efficient than methods directly addressing components of p,
particularly for programs at local-scales. This emphasizes the need
for appropriate data collection and statistical model use to avoid
unnecessary and unsupportable assumptions about perfect or
homogeneous detection (Conroy et al., 2011).

Distance-sampling and associated analytical tools (Burnham
et al., 1980, Buckland et al., 2001) have commonly been applied
to passerine bird monitoring programs in an effort to solve prob-
lems related to incomplete detection (Buckland, 2006; Marques
et al.,, 2007; Rosenstock et al., 2002), by directly addressing pq
and thereby improving estimates of abundance. However, distance
sampling surveys based primarily on auditory cues often violate
the basic assumptions of the approach and produce unreliable esti-
mates of abundance (Alldredge et al., 2007b; Bachler and Liechti,
2007, Efford and Dawson, 2009; Simons et al., 2009). Double ob-
server methods (Alldredge et al., 2008; Nichols et al., 2000) also ad-
dress pg with fewer unmet assumptions, but if only conducted once
per season at each site, either method confounds variation in p,
and p, with variation in abundance. Time of detection methods
(Alldredge et al., 2007a, 2007c; Farnsworth et al., 2002) estimate
both p4 and pg, but do not address p,. Each of these approaches,
while providing a defensible estimate of some components of p,
must make tenuous assumptions regarding the remaining ele-
ments. It is highly likely that p, and p, change temporally (e.g.,
hourly, daily, annually), suggesting that estimates of abundance
based on a sampling approach that does not directly address these
detection components will be biased by an unknown amount. The
risk of bias has obvious implications for long-term monitoring pro-
grams, although recent developments in field and analytical meth-
ods suggest a potential solution.

Kéry et al. (2005) recently demonstrated that temporally re-
peated counts could be useful as an alternative field sampling tech-

nique for passerines that included the estimation of p, as part of
the overall p. Counts were repeated over multiple days during a
relatively short portion of the breeding season, and the series of
counts was then analyzed using hierarchical N-mixture models
(Kéry, 2008; Royle, 2004). This approach is a direct extension of
the methods developed for occupancy estimation (MacKenzie
et al.,, 2006; Royle and Nichols, 2003), and the use of zero-inflated
Poisson (ZIP) mixtures can improve fit when individuals are not
detected at a large proportion of sampling points (Joseph et al.,
2009; Martin et al., 2005; Wenger and Freeman, 2008). One of
the primary advantages of these methods is that py, ps and p,
are all included in the composite estimate of p when sampling is
conducted over multiple days throughout the breeding season.
The resulting abundance estimates are analogous to “use” in an
occupancy framework (MacKenzie et al., 2006; Mordecai et al.,
2011) and represent the “superpopulation” of territories used dur-
ing the season that intersect the sampled space at each sampling
location. However, because the area sampled is undefined, super-
population abundance cannot generally be expressed as density.
This is very similar to the definition of the superpopulation used
in the capture-recapture literature (Kendall et al., 1997; Nichols
et al., 2009; Schwarz and Arnason, 1996; Williams et al., 2002).

The primary advantage to using the superpopulation for infer-
ence is that it represents the total breeding population using a site
during the season and is not conditioned on presence or availabil-
ity across time and space for appropriate inference. Patterns in
migratory arrival differ among species, and both p,, and p, are likely
to increase to a peak and then decline in differing patterns among
species throughout the breeding period. The breadth of this peak
may also vary among species with some having high p, and p,
for a longer periods. Similarly, the timing of peak vocalization
likely varies among species. Some species sing primarily early in
the morning and become nearly silent later in the day, while others
may be more likely to vocalize mid-morning or even sing at a
rather consistent rate throughout the day. This suggests that the
date and time of any given survey is unlikely to be optimal for
all species, and without addressing p, and p, directly, it becomes
difficult to identify to which population or portion of the popula-
tion the abundance estimates apply. Monitoring programs are of-
ten intended to continue for decades, and the likelihood of p,
and p, remaining relatively constant through time is low. In addi-
tion, if trends in peak arrival or breeding periods were to occur,
trends in abundance based on single visit surveys would likely be
highly dependent on untestable assumptions about annual varia-
tion in survey timing, conditions, and migratory arrival patterns.
The subsequent reduction in power would result in longer time
periods necessary to detect population trends, increased potential
for detecting false trends, and decreased efficacy of passerine con-
servation programs in general.

Efforts to estimate abundance and identify trends in a suite of
passerine birds in Denali National Park and Preserve (Denali) have
been underway since 1992 as part of the National Park Service’s
(NPS) long-term ecological monitoring program. More recently,
the passerine monitoring work in Denali was included in the Cen-
tral Alaska Monitoring Network’s program (MacCluskie et al.,
2005) as part of the national NPS Inventory and Monitoring effort
(Fancy et al., 2009). Past passerine monitoring efforts in Denali
consisted of unadjusted point counts and distance sampling sur-
veys but were determined to be unlikely to meet objectives due
to identified assumption violations (see Alldredge et al., 2007b;
Hoekman and Lindberg, 2012). We used repeated count data col-
lected in Denali between 1995 and 2009 to demonstrate the poten-
tial inferential and logistical advantages of repeated point count
methods for long-term passerine monitoring programs. Our pri-
mary objectives were to: (1) assess the magnitude of temporal var-
iation in p for the most common species in Denali, (2) assess trends
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in superpopulation abundance for the most common species, and
(3) provide recommendations for the design and implementation
of future multi-species passerine monitoring programs.

2. Methods

We conducted repeated roadside surveys along the first 118 km
of the 144-km Denali park road in the northern foothills of the
Alaska Range in the northeastern portion of Denali (63°35.8'N,
149°38.2'W). This narrow, two-lane road is paved for the first
24 km and is the only road located within the park. The road bi-
sects many of the main habitat types found in the northeastern
portion of Denali. Surveys generally followed North American
Breeding Bird Survey (BBS) methodology (Peterjohn, 1994) and in-
cluded 3 roadside routes of 50 points each at 0.8 km spacing. Stan-
dard 3-min point counts were conducted at each point multiple
times annually. During each count all birds seen or heard within
~400 m were recorded (Peterjohn, 1994), although only records
of singing males were used for analysis. We standardized surveys
by generally starting each survey 0.5 h before sunrise, finishing
each survey within ~6 h, and surveying only one route/day/obser-
ver. Surveys were conducted from late-April to early-July by
trained observers, and each route was surveyed at least twice in
each year it was included in the analyses. Up to three observers
conducted surveys each year, but the same routes were not always
surveyed by the same individual. Surveys were conducted on days
with good visibility, little or no precipitation, and when wind speed
was <13 kph. Repeated counts were conducted during six years
(1995, 1996, 1997, 1998, 2006, and 2009), and the number of
repeated counts on each route varied (Table 1). During a year
when a route was sampled, revisits to each route were separated
by 2-21 d. We assigned one dominant habitat type to each point
including needle-leaf forest, mixed forest, tall scrub, low scrub,
and bare ground based on Viereck's vegetation classification
scheme for Alaska (Viereck et al., 1992).

2.1. Model assumptions

For data collected using repeated counts and analyzed using ZIP
mixture models, there are several assumptions that must be met or
addressed to assure proper inference, including: (1) population clo-
sure, (2) constant probability of detecting an individual over survey
occasions, (3) detection probabilities are the same among individ-
uals of the same species, and (4) individuals are not double
counted during a survey. If population closure is not maintained,
estimates of abundance will be biased high, although covariates
such as survey date may be included to relax this assumption
(Weir et al., 2005). The assumption of constant detection among
occasions may also be relaxed through the use of appropriate
covariates (e.g., time of day, observer). The third assumption ap-
plies to all commonly used survey methods and may be relaxed
using mixture distributions (Williams et al., 2002; Nichols et al.,
2009; Pledger et al., 2010). The final assumption can usually be

Table 1

Number of repeated surveys for each Breeding Bird Survey-style route and dates of
first and last count periods for the six survey years in Denali National Park and
Preserve, Alaska between 1995 and 2009. Routes are 39.2 km in length and contain 50
points at 0.8 km intervals.

Year Route1 Route2 Route3 First Count Last Count Observers
1995 18 15 2 April 30 July 4 1,3,6
1996 18 12 2 April 18 July 13 1,7,8
1997 2 2 2 June 3 June 28 7

1998 2 0 0 June 4 June 11 7

2006 10 8 0 May 3 July 6 4

2009 6 6 3 May 7 June 28 2,5

met by conducting counts over a short duration to minimize move-
ment of individuals and potential errors. Violation of these
assumptions can result in biased estimates of detection probabil-
ity, presence, and abundance; therefore, we included random ef-
fects and several covariates expected to account for a majority of
the expected variation in detection, presence, and abundance for
each species and addressing the first three assumptions. We used
a short (3 min) count period to reduce the chances of double count-
ing individuals, thereby meeting the fourth assumption.

2.2. Statistical analyses

We restricted our analysis to singing males to prevent overesti-
mation of the superpopulation that could be caused by detections
of migrants or non-territorial individuals. We estimated the overall
p (the product of p,, pp, and pg), probability of occupancy (probabil-
ity a site contained a territory), abundance (number of used terri-
tories overlapping the sampling space at a given point), and trends
in abundance for 12 species of breeding passerines using hierarchi-
cal zero-inflated Poisson (ZIP) mixture models similar to those
developed by Joseph et al. (2009) and Wenger and Freeman
(2008). Our formulation followed the description of zero-inflated
mixture models by Joseph et al. (2009) where the abundance dis-
tribution is not truncated at zero (i.e., zeros can arise from either
the Bernoulli or Poisson processes). The Wenger and Freeman
(2008) formulation attributes all zeros to stochastic processes
(i.e., all zeros are attributed to the Bernoulli process and the Pois-
son is restricted to be >0), but this scenario is only likely to be true
when abundance is moderate to high so that zeros are unlikely to
be generated from the Poisson process. The general form of the
model we used can be written as:

nijc ~ binomial(Kj, OccP;)
OccPye = occir x pyje

occ;: ~ Bernoulli(y;,)

Kir ~ Poisson(4;)

logit (p;) = o0 + dexijt + et
k

logit (yy) = Bo + Zﬂkxit + €
k

log (Jic) = o + kaxu + €t
k

where n;; represents the observed counts at each pointi=1,2,...,I
points, during each repeated count j = 1,2,...,J counts, in each year
t=1,2,...,Tyears. These counts are viewed as realizations of a bino-
mial process with abundance K;; and probability of occupancy and
detection, OccPy,. Detection (pj;), occupancy (), and mean abun-
dance (/) can all be modeled as functions of covariates (x), and ran-
dom effects (e). Note that fixed and random effects were not
allowed to vary among repeated counts (j) for occupancy or abun-
dance because the occupancy and abundance of territories were as-
sumed to be fixed throughout the season. Using this basic
framework, we created a model structure that included fixed and
random effects that addressed suspected sources of variation in
detection, occupancy, and abundance. This model was then applied
to each species individually. We added two covariates to address
variation in p, of males within territories and p, due to singing
behavior. First, we added a quadratic effect of survey timing relative
to sunrise to the detection portion of the model expecting that sing-
ing rates for each species (i.e., p,) would change throughout the day,
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Annual number of detections of singing males for each of 12 species of breeding passerine birds in Denali National Park and Preserve, Alaska between 1995 and 2009. Counts are

summed across all sample periods and routes for each year.

Species 1995 1996 1997 1998 2006 2009
Ruby-crowned kinglet (Regulus calendula) 125 185 16 15 97 58
Arctic warbler (Phylloscopus borealis) 258 284 61 0 92 131
Swainson’s thrush (Catharus ustulatus) 212 175 141 62 159 89
American robin (Turdus migratorius) 510 374 44 36 283 137
Varied thrush (Ixoreus naevius) 345 252 19 16 241 162
Orange-crowned warbler (Vermivora celata) 1019 606 157 84 369 371
Wilson’s warbler (Wilsonia pusilla) 1144 934 264 130 513 372
American tree sparrow (Spizella arborea) 2979 2137 480 203 1278 819
Savannah sparrow (Passerculus sandwichensis) 775 501 219 32 204 293
Fox sparrow (Passerella iliaca) 572 420 138 47 605 718
White-crowned sparrow (Zonotrichia leucophrys) 3379 2963 769 210 1591 1061
Dark-eyed junco (Junco hyemalis) 669 466 85 58 397 311

possibly in a nonlinear manner. We expected that some species
would be most detectable early in the morning, while others may
peak later in the morning or even maintain a relatively constant
singing rate throughout the day. Second, the addition of a quadratic
effect of survey date allowed the probability of presence (i.e., pp) to
approach zero during the beginning of the season before the arrival
of migrant species, increase as migrants arrived, and then decline as
breeding was completed. We also included a random observer ef-
fect, assuming that observer abilities might affect detection (e.g.
Link and Sauer, 2002). Occupancy was modeled as a function of
habitat type, assuming that some species may occur in particular
habitats more often than others. Abundance was assumed to vary
among habitat types, and we included a linear trend term on the
log scale to investigate the possibility that abundance in all habitats
might be changing through time. Finally, year was also included as a
random effect on abundance to account for remaining annual vari-
ation. Overall, this provided a flexible model that simultaneously
accounted for much of the variation we expected in detection be-
tween surveys and years, while providing estimates of occupancy
and superpopulation abundance corrected for incomplete detec-
tion.We selected 12 of the most common breeding passerine spe-
cies detected during the surveys for analysis (Table 2) and fit the
above model to the data for each. We used program R 2.9.0 (R
Development Core Team, 2009) for data preparation, WinBUGS
1.4.3 (Spiegelhalter et al., 2004) for model fitting, and the package
R2WinBUGS (Sturtz et al.,, 2005) as an interface between the
two. We used diffuse normal priors on parameters with all
o ~ N(0,100), B ~ N(0,100), and yx ~ N(0,100). The priors for the
standard deviation of the random effects were ¢ ~ UNIF(0,100).
We ran 2 independent Markov chains for 100,000 iterations after
a 100,000-iteration burn-in, thinned these values by five to reduce
storage requirements, and retained the remaining values for infer-

Table 3

ence. We assessed convergence using the Gelman-Rubin diagnostic
(Brooks and Gelman, 1998) and scaled continuous covariates
(mean =0, SD = 1) to improve convergence properties. The hierarchi-
cal modeling approach allowed us to account for unbalanced samples
(e.g., different numbers of revisits at each point) in the analysis be-
cause missing values are estimated along with the other parameters
in the model during the updating process (Gelman et al., 2004). The
formal inclusion of both missing values and random terms also pro-
vided proper estimates of precision for all parameters, and all derived
estimates were generated during the updating process directly. All
estimates are presented as means and 95% Bayesian credible inter-
vals (analogous to frequentist confidence intervals [CI]).

3. Results

We found substantial variation in p throughout the season, as
well as within the recommended 10-30 June survey period for
interior Alaska (Handel and Cady, 2004). Total detections varied
dramatically among species (Table 2), detection probability was
strongly affected by both survey date and time after sunrise (Ta-
ble 3), and the shape, magnitude, and pattern of these effects var-
ied substantially among species (Figs. 1 and 2). No range of survey
dates or times was optimal for detecting all species (Figs. 1 and 2),
and differences among observers were large, with some observers
detecting more than five times as many individuals of some species
on average after controlling for survey date and time (Table 4).
During the recommended survey period for interior Alaska, these
sources of variation combined (see Figs. 1 and 2 and Table 4) could
have resulted in a nearly 10-fold difference between observed
counts and estimated abundance for some species during a single
visit, depending on which observer conducted the survey and the

Parameter estimates and 95% credible intervals of the effects of hours since sunrise (hour) and survey date (date) on detection probability, and estimated annual percent change
in abundance (trend) for each of 12 species of breeding passerine birds in Denali National Park and Preserve, Alaska between 1995 and 2009. Estimates for hour and date are
presented on the logit-scale and covariates have been standardized to have a mean = 0 and SD = 1. Estimates of trends were converted to real scale and are interpreted as percent
change in abundance/year. Bold numbers indicate estimates with 95% credible intervals that do not include 0.

Species

Hour

Hour?

Date

Date?

Trend (%)

Ruby-crowned kinglet
Arctic warbler
Swainson’s thrush
American robin

Varied thrush
Orange-crowned warbler
Wilson'’s warbler
American tree sparrow
Savannah sparrow

Fox sparrow
White-crowned sparrow
Dark-eyed junco

~0.21 (—0.38, —0.04)
0.02 (~0.17, 0.22)
~0.96 (—1.18, —0.76)
~0.70 (—0.82, —0.59)
~0.62 (—0.85, —0.40)
—0.11 (-0.18, —0.04)
0.30 (0.22, 0.38)
~0.12 (-0.18, —0.07)
~0.19 (-0.29, —0.10)
0.13 (0.05, 0.21)
~0.29 (—0.34, —0.24)
~0.40 (—0.51, —0.29)

0.04 (~0.11, 0.18)
0.10 (~0.02, 0.22)
0.20 (0.03, 0.36)

0.15 (0.05, 0.25)
~0.35 (~0.54, —0.17)
0.07 (0.01, 0.12)
~0.21 (~0.27, —0.15)
~0.12 (-0.16, —0.08)
0.02 (—0.05, 0.09)
~0.03 (~0.10, 0.03)
0 (—0.04, 0.04)

0.05 (~0.04, 0.14)

~0.91 (~1.08, —0.75)
4.92 (4.72, 5.00)

1.91 (1.64, 2.19)
~0.31 (—0.40, —0.23)
~0.39 (—0.49, —0.30)
1.02 (0.92, 1.12)
0.95 (0.86, 1.05)

0.01 (~0.03, 0.04)
0.56 (0.47, 0.65)
~0.03 (~0.09, 0.03)
0.53 (0.49, 0.57)
0.20 (0.14, 0.26)

~0.46 (—0.58, —0.34)
~2.35 (-2.51, —2.17)
~1.42 (-1.66, —1.18)
~0.36 (—0.44, —0.29)
~0.26 (—0.34, —0.19)
—0.98 (—1.08, —0.88)
~1.33(-143, -1.22)
~0.27 (-0.30, —0.23)
~0.83 (-0.93, —0.73)
~0.33 (-0.39, —0.26)
~0.47 (—0.51, —0.44)
~0.05 (~0.11, 0)

~0.9(-9.7,88)
1.6 (—13.0, 26.7)
~1.8(-13.3,22.3)
~0.6(-9.5,9.6)
1.0 (=5.6, 8.3)
~1.1 (-84, 6.0)
~43 (-85, —0.2)
~2.6(-75,3.9)
~14(-7.4, 49)
6.4(33,9.7)
~2.1(-6.6,2.0)
~03(-83,62)
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06 RCKI 06 ARWA . -

Date Date

Fig. 1. Detection probability (P) of territories relative to survey date (date) for ruby-crowned kinglet (RCKI), arctic warbler (ARWA), Swainson’s thrush (SWTH), American
robin (AMRO), varied thrush (VATH), orange-crowned warbler (OCWA), Wilson’s warbler (WIWA), American tree sparrow (ATSP), Savannah sparrow (SAVS), fox sparrow
(FOSP), white-crowned sparrow (WCSP), and dark-eyed junco (DEJU) in Denali National Park and Preserve, Alaska between 1995 and 2009. Estimates assume mean species-
specific observer effect, mean number of hours since sunrise, and approach 0 during periods when a species is unavailable for sampling due to migration patterns. Dashed
lines indicate 95% credible intervals.

date and time it was completed. Much of this variation was related After accounting for these sources of variation in p, we esti-
to covariates representing changes in p, and p, and confirmed that mated that fox sparrow (Passerella iliaca) abundance increased at
presence and availability were not constant under most circum- a rate of 6.4% (95% CI: 3.3-9.7%) annually over the 15 years of

stances for most species. our study while Wilson’s warblers (Wilsonia pusilla) decreased at
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06 SAVS

Fig. 1.

arate of —4.3% (95% Cl: —8.5% to —0.2%) annually. This translates to
an approximately 250% increase in fox sparrow abundance and a
48% decline in Wilson’s warbler abundance along the Denali park
road between 1995 and 2009. Credible intervals around the trend
estimates for the remaining species overlapped zero providing lim-
ited evidence of population changes (Table 3). Estimates of occu-
pancy and abundance indicated that both species were less
common in mixed forest and most common in scrub habitats (Ta-
ble 5), assuming the effective sampling area is similar between
habitats and species.

4. Discussion

The primary goal of many long-term monitoring programs is to
identify population trends quickly, efficiently, and accurately to
inform timely conservation decisions. Unfortunately, many com-
monly employed field approaches inadequately address incom-
plete detection, potentially limiting their sensitivity and utility
for the conservation of passerine populations. Our results demon-
strated that none of the components of p were likely to be constant
during the breeding season for the species we considered, and the
magnitude of the variation we observed suggested that abundance
and trend estimates would be at substantial risk for bias and
reduced precision if the detection process was not completely
addressed. Estimates of superpopulation abundance are readily
interpretable as the number of territories overlapping the sample
space that are used during the breeding season and are not depen-
dent on untenable assumptions about the probabilities of presence
and availability across space and time. Single-visit approaches
typically confound abundance with p,, (and often p,), suggesting
that repeated count methods generating estimates of superpopula-
tion abundance may be more suitable than many other techniques
for long-term passerine monitoring.

Our results agree with extensive past work identifying survey
date (Bibby et al., 2007; Skirvin, 1981), time of day (Robbins,

06 FOSP

<
%

(continued)

1981), and observer (Link and Sauer, 2002; Norvell et al., 2003;
Sauer et al., 1994) as important sources of variation in p. Changes
in p relative to survey date likely reflected the timing of migratory
arrival for each species, and a comparison among species revealed
that peak detection periods did not overlap in many cases. The
probability of detecting early migrants (e.g., ruby-crowned kinglet)
declined to near O by the time later migrants arrived on the study
area (e.g., Swainson'’s thrush, arctic warbler), revealing the impor-
tance of understanding and addressing p, and p, during the sam-
pling period for each species. Similarly, changes in p related to
time of day demonstrated that patterns in singing rates varied by
species throughout the morning hours. For example, detection
probabilities for Swainson’s thrush and American robin were high-
est 0.5 h prior to sunrise and declined to near 0 within 6 h, while
the probability of detecting a Wilson’s warbler was highest
approximately 4-5 h after sunrise. In addition, although all observ-
ers were given extensive standardized training, some observers
were >5 times as likely to detect individuals of some species (e.g.,
orange-crowned sparrow, Savannah sparrow), while detection
probabilities were fairly constant among all observers for other
species (e.g., ruby-crowned kinglet, American tree sparrow). This
suggests that some observers do poorly with certain species, while
some species are consistently detected by all observers. Combined,
these results provide strong evidence that survey standardization
is an unsatisfactory solution to the problem of incomplete detec-
tion for most species. Our results also quantified this variation
and revealed that variation in p could be very large (i.e., 10-fold)
for a given species depending on time, date, and observer, even
when conducted during the standardized survey period for Alaska
(i.e., 10-30 June within approximately 6 h of sunrise).

Because the assumptions of relatively constant p, and p, are dif-
ficult to meet, abundance estimates generated from data collected
using alternative field methods are often quite variable between
years and projects. Therefore, direct comparisons among surveys
employing different field methods are generally not appropriate
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Fig. 2. Detection probability (P) of territories relative to the number of hours since sunrise (hours) for ruby-crowned kinglet (RCKI), arctic warbler (ARWA), Swainson'’s thrush
(SWTH), American robin (AMRO), varied thrush (VATH), orange-crowned warbler (OCWA), Wilson’s warbler (WIWA), American tree sparrow (ATSP), Savannah sparrow
(SAVS), fox sparrow (FOSP), white-crowned sparrow (WCSP), and dark-eyed junco (DEJU) in Denali National Park and Preserve, Alaska between 1995 and 2009. Estimates
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assume the mean species-specific observer effect and mean survey date. Dashed lines indicate 95% credible intervals.

(e.g., Reidy et al., 2011; Thompson and La Sorte, 2008). When var-
iation in p, and p, are not formally addressed, the estimates of
abundance do not necessarily apply to the same population

between years but instead represent the population that is present
and available for sampling during a given year’s survey. This has
implications for trend estimation because in order to efficiently
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Table 4

Observer-specific estimates of detection probability for 12 species of breeding Passerine birds in Denali National Park and Preserve, Alaska (1995-2009) for mean time of day and
survey date. Estimates are individual levels of the observer random effect on detection probability. Integers one through eight represent observer identification and c® is the
standard deviation of the observer random effect on detection probability. The three species with the most variation in detection probability are shown in bold.

Species 1 2 3 4 5 6 7 8 a?

Ruby-crowned kinglet 0.11 0.09 0.09 0.13 0.12 0.10 0.11 0.11 0.27
Arctic warbler 0.02 0.04 0.09 0.05 0.06 0.05 0.03 0.05 0.75
Swainson’s thrush 0.04 0.08 0.05 0.05 0.05 0.05 0.04 0.06 0.44
American robin 0.11 0.17 0.14 0.12 0.13 0.12 0.16 0.05 0.56
Varied thrush 0.16 0.24 0.12 0.18 0.11 0.14 0.12 0.11 0.48
Orange-crowned warbler 0.17 0.24 0.25 0.14 0.04 0.25 0.15 0.34 1.14
Wilson’s warbler 0.19 0.40 0.23 0.36 0.07 0.25 0.34 0.34 1.06
American tree sparrow 0.42 0.45 0.45 0.41 0.42 0.46 0.41 0.41 0.14
Savannah sparrow 0.19 0.38 0.39 0.22 0.07 0.34 0.35 0.32 0.99
Fox sparrow 0.23 0.35 0.18 0.27 0.24 0.27 0.28 0.20 0.37
White-crowned sparrow 0.37 0.37 0.33 0.36 0.58 0.48 0.38 0.25 0.55
Dark-eyed junco 0.09 0.17 0.09 0.11 0.16 0.15 0.10 0.10 0.41

assess trends, one should sample the same population over time
(Westcott et al., 2012). Variation in survey timing alone could re-
sult in inference to different portions of the overall population
from year to year, and standardization has been shown to be an
inadequate solution to this problem (Burnham, 1981; Farnsworth
et al., 2002; Rosenstock et al., 2002; Thompson, 2002). Increased
variation in abundance estimates due to unmeasured variation in
p has been shown to decrease the sensitivity of monitoring pro-
grams where trend estimation is likely a primary objective (Kéry
et al., 2005; Pollock et al., 2002), however, implementation of a
field protocol that provides inference to the superpopulation may
be a reasonable alternative.

We expect that the superpopulation may actually be the popu-
lation of interest for many monitoring programs due to its infer-
ence to the breeding population using a site. In addition,
estimates of superpopulation abundance are not conditioned on
components of the detection process, are less dependent on untest-
able assumptions, and trends can be directly interpreted as uncon-

ditional changes in the number of breeding individuals using the
study area. Unsurprisingly, superpopulation abundance estimates
have been found to be higher than abundance estimates based
on other methods (e.g., Hunt et al., 2012) because estimates in-
clude individuals that are not present or available in the study site
during a single survey. Discrepancies in abundance estimates due
to underlying assumptions associated with each field method can
lead to confusion due to a lack of a clear definition of the ‘abun-
dance’ being measured using each approach (Nichols et al.,
2009). We suspect this lack of clarity in inference may be partially
responsible for the extensive discussions in the recent literature
concerning the pros and cons of various field and analytical proto-
cols, and the sometimes conflicting results based on them (e.g.,
Hunt et al., 2012, Johnson, 2008; Thompson and La Sorte, 2008).
While we agree that further development of methods addressing
all components of p are crucial for effective monitoring, we suspect
that a lack of clarity regarding inference is also a major problem
that could be compounded if trends in detectability were to occur.
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Table 5

Estimates and 95% credible intervals of occupancy and abundance for 4 habitats and 2 species, fox sparrows and Wilson’s warblers, in Denali National Park and Preserve, Alaska

for the average level (0) of the random year effect.

Habitat type

7 T
'//fox sparrow

Ywilson's warbler

Nfox sparrow NWilson's warbler

Coniferous 0.97 (0.76, 1) 0.98 (0.86, 1) 0.42 (0.27, 0.63) 2.04 (1.33, 3.10)
Mixed forest 0.35 (0.18, 0.65) 0.67 (0.46, 0.99) 1.00 (0.42, 1.82) 3.08 (1.69, 4.93)
Tall scrub 0.93 (0.85, 1) 0.99 (0.95, 1) 1.84 (1.35, 2.46) 5.88 (4.05, 8.64)
Low scrub 0.90 (0.84, 0.96) 0.97 (0.92, 1) 1.86 (1.38, 2.44) 5.32 (3.67, 7.84)
oyt 0.12 (0.004, 0.41) 0.22 (0.04, 0.62)

¥ = occupancy, N = predicted mean abundance given occupancy.
' 6y, = the standard deviation of the year random effect on abundance.

Research has shown that migratory arrival timing has changed
for many avian species (Cotton, 2003; Parmesan, 2007; Root et al.,
2003), suggesting that p, on any given date will likely change
through time for some species. If this occurs, the ability to separate
trends in abundance from trends in timing of arrival will be critical
for effective monitoring and conservation. The approach we de-
scribe provides a formal approach to modeling changes in migra-
tory timing by including appropriate temporal and
environmental covariates in the detection model. Variation in p
due to timing can then be directly separated from variation in
abundance, reducing bias and increasing precision in trend esti-
mates (Kéry et al., 2005; Royle and Dorazio, 2006, 2008; Royle
et al., 2007). While it has been suggested that simple unadjusted
counts may be useful in some limited situations (Johnson, 2008),
we would argue that most passerine monitoring programs would
benefit from more robust protocols based on the methods we de-
scribe. Recognition of large declines (e.g., >3.5%/year) may be pos-
sible using unadjusted counts (Bart et al., 2004; Thogmartin et al.,
2007), but one of the most important functions of long-term mon-
itoring programs is to provide timely information on more subtle
trends before dramatic changes in populations occur (Westcott
et al., 2012). Without a sensitive monitoring tool, it is likely only
the most dramatic population trends will be evident after large de-
clines in abundance have occurred.

Despite the short duration and sporadic nature of sampling (i.e.,
6 years out of 15), we detected population trends in, and basic hab-
itat associations for, 2 of the 12 species we considered. Although
we did not address the power of the approach we used, our results
show that a repeated count approach can provide trend informa-
tion about passerine populations with relatively few sampling
periods. This suggests that the number of years necessary to detect
trends may be reduced because much of the variation in detection
can be formally addressed. We found large amounts of temporal
variation in p, indicating that ignoring variation in p, and p, would
decrease the precision of estimates, thereby increasing the number
of survey years necessary to detect trends and decreasing the effec-
tiveness of long-term monitoring for conservation of passerine
populations. Recent work has suggested that increased precision
of abundance estimates for monitoring programs was a major con-
tributor to the identification of population trends (Seavy and Rey-
nolds, 2007; Westcott et al., 2012). Despite the ability of less
complex methods to identify large population declines over long
time horizons in some situations (e.g., Bart et al., 2004; Johnson,
2008), we argue that monitoring programs should strive to in-
crease estimator precision and stability using the best techniques
available. Improvements in precision and inference would facili-
tate appropriate conservation actions prior to dramatic changes
in population size.

5. Conclusions

Overall, our results suggest that the sensitivity and effective-
ness of many passerine monitoring programs, particularly those

currently in the design phase, could be improved by a more theo-
retically sound approach combining repeated count surveys for
data collection and mixture models for analysis. When possible, re-
peated visits should cover the expected range in temporal variation
(e.g., time of day, season date) to improve the estimation of these
covariates. We contend that inference to the superpopulation
may be of the most utility for conservation due to its direct and
intuitive definition and a reduced dependence on assumptions
about the detection process as compared to more commonly used
methods. Using these more sensitive methods, we found that de-
spite discontinuous sampling (6 years) over a relatively short study
period (15 years) we were able to identify trends in 2 of the 12 spe-
cies investigated. If the identification of population trends is a pri-
mary goal, we suggest that methods correcting for all sources of
incomplete detection are necessary. Repeated count methods
may also be particularly useful if changes in migratory arrival tim-
ing are expected.
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